3,230 research outputs found

    Transmission electron microscopy and energy dispersive X-ray spectroscopy on the worn surface of nano-structured TiAlN/VN multilayer coating

    Get PDF
    Nano-structured TiAIN/VN multilayer hard coatings grown by cathodic arc metal ion etching and unbalanced magnetron sputtering deposition have repeatedly shown low coefficients of friction and wear. In this paper, we employed the combined methods of cross-sectional ion beam milling sample preparation, conventional transmission electron microscopy, energy dispersive X-ray spectroscopy and quantitative spectrum analysis to give a comprehensive characterization of wear induced tribofilm, worn TiAIN/VN surface as well as wear debris. The major wear mechanism operating in the TiAIN/VN coating is the tribo-oxidation wear. A 20-50 nm thick tribofilm was observed on the TiAIN/VN worn surface, having inhomogeneous density, amorphous structure and multicomponent V-Al-Ti-O composition. Therefore the real sliding contact during the ball-on-disk test was a three-body sliding system including the tribofilm, in which the self-sintering and shearing deformation of the multicomponent oxide film played a significant role in determining the low friction coefficient. Owing to the low friction and high hardness, the TiAIN/VN worn surface retained good structural integrity without any crack, delamination or detectable deformation, resulting in minimized mechanical wear. (c) 2005 Elsevier B.V. All rights reserved

    X-ray microanalysis in STEM of short-term physico-chemical reactions at bioactive glass particles / biological fluids interface. Determination of O/Si atomic ratios

    Get PDF
    Short-term physico-chemical reactions at the interface between bioactive glass particles and biological fluids are studied and we focus our attention on the measurements of O/Si atomic ratio. The studied bioactive glass is in the SiO2-Na2O-CaO-P2O5-K2O-Al2O3-MgO system. The elemental analysis is performed at the submicrometer scale by STEM associated with EDXS and EELS. We previously developed an EDXS quantification method based on the ratio method and taking into account local absorption corrections. In this way, we use EELS data to determine, by an iterative process, the local mass thickness which is an essential parameter to correct absorption in EDXS spectra. After different delays of immersion of bioactive glass particles in a simulated biological solution, results show the formation of different surface layers at the bioactive glass periphery. Before one day of immersion, we observe the presence of an already shown (Si,O,Al) rich layer at the periphery. In this paper, we demonstrate that a thin electron dense (Si,O) layer is formed on top of the (Si,O,Al) layer. In this (Si,O) layer, depleted in aluminium, we point out an increase of oxygen weight concentration which can be interpreted by the presence of Si(OH)4 groups, that permit the formation of a (Ca,P) layer. Aluminium plays a role in the glass solubility and may inhibit apatite nucleation. After the beginning of the (Ca,P) layer formation, the size of the electron dense (Si,O) layer decreases and tends to disappear. After two days of immersion, the (Ca,P) layer grows in thickness and leads to apatite precipitatio

    Absence of room temperature ferromagnetism in bulk Mn-doped ZnO

    Full text link
    Structural and magnetic properties have been studied for polycrystalline Zn_1-xMn_xO (x=0.02, 0.03, 0.05). Low-temperature (~500 oC) synthesis leaves unreacted starting ZnO and manganese oxides. Contrary to a recent report, no bulk ferromagnetism was observed for single-phase materials synthesized in air at temperatures above 900 oC. Single-phase samples show paramagnetic Curie-Weiss behavior.Comment: Accepted for publication in J. Appl. Phys., RevTeX, 3 pages, 4 figure

    Thermoelectric properties of lead chalcogenide core-shell nanostructures

    Full text link
    We present the full thermoelectric characterization of nanostructured bulk PbTe and PbTe-PbSe samples fabricated from colloidal core-shell nanoparticles followed by spark plasma sintering. An unusually large thermopower is found in both materials, and the possibility of energy filtering as opposed to grain boundary scattering as an explanation is discussed. A decreased Debye temperature and an increased molar specific heat are in accordance with recent predictions for nanostructured materials. On the basis of these results we propose suitable core-shell material combinations for future thermoelectric materials of large electric conductivities in combination with an increased thermopower by energy filtering.Comment: 12 pages, 8 figure

    Effect of oxidizing concentration on the corrosion resistance of the cerium conversion coating on galvanized steel

    Get PDF
    Ce-based conversion films have been assessed as alternatives for replacement of Cr6+-based films,which have been forbidden for their toxicity and carcinogenic properties. However, corrosion protection associated with chromate films is difficult to achieve by other surface treatments. Experimental results have revealed that to obtain the highly satisfactory results provided by chromate-based conversion coatings, it is necessary to improve the anticorrosive properties of the new chromium-free coatings. The present work deals with the effect of the oxidant concentration in the cerium-based conversion baths on the corrosion resistance of the films deposited on galvanized steel. Electrogalvanized steel sheets were exposed to cerium chloride-based baths with different concentrations of oxidant for a minute. The surface of the treated samples was analyzed by XPS and SEM-EDXS, while its corrosion resistance was investigated using electrochemical tests (EIS) conducted in a 0.05 M NaCl solution and the impedance spectra evolution analyzed as a function of the exposure time. The results showed a direct relationship between oxidant concentration and corrosion resistance. When the oxidant concentration rose from2mL.L-1 to 12mL.L-1, the corrosion resistance increased about 5 times, and this was attributed to the decrease in the Ce3+/Ce4+ relationship of the conversion film.Fil: Culcasi, José Daniel. Universidad Nacional de La Plata; ArgentinaFil: Elsner, Cecilia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Di Sarli, Alejandro Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; ArgentinaFil: Palomino, Luis. Universidade de Sao Paulo; BrasilFil: Tomachuk, Celia Regina. Instituto de Investigaciones Energéticas y Nucleares. San Pablo; BrasilFil: Costa, Ilda. Instituto de Investigaciones Energéticas y Nucleares. San Pablo; Brasi

    Effect of Metallic Waste Addition on the Physical and Mechanical Properties of Cement-Based Mortars

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).This paper investigates the influence of the type and amount of recycled metallic waste on the physical and mechanical properties of cement-based mortars. The physical and mechanical properties of cement mortars, containing four different amounts of metallic waste (ranged 4 to 16% by cement weight), were evaluated by measuring the bulk density, total porosity, flexural and compressive resistance, and dynamic elastic modulus by ultrasonic tests. All the properties were measured on test specimens under two curing ages: 7 and 28 days. Additionally, the morphological properties and elemental composition of the cement and metallic waste were evaluated by using Scanning Electron Microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), and X-ray fluorescence (XRF). Main results showed that the addition of metallic waste reduced the bulk density and increased the porosity of the cement-based mortars. Furthermore, it was observed that flexural and compressive strength proportionally increased with the metallic waste addition. Likewise, it was proven that elastic modulus, obtained by compressive and ultrasonic tests, increases with the metallic waste amount. Finally, based on a probability analysis, it was confirmed that the addition of metallic waste did not present a significant effect on the mechanical performance of the cement-based mortars.Peer reviewedFinal Published versio

    Microstructure and corrosion evolution of additively manufactured aluminium alloy AA7075 as a function of ageing

    Full text link
    Additively manufactured high strength aluminium alloy AA7075 was prepared using selective laser melting. High strength aluminium alloys prepared by selective laser melting have not been widely studied to date. The evolution of microstructure and hardness, with the attendant corrosion, were investigated. Additively manufactured AA7075 was investigated both in the as-produced condition and as a function of artificial ageing. The microstructure of specimens prepared was studied using electron microscopy. Production of AA7075 by selective laser melting generated a unique microstructure, which was altered by solutionising and further altered by artificial ageing - resulting in microstructures distinctive to that of wrought AA7075-T6. The electrochemical response of additively manufactured AA7075 was dependent on processing history, and unique to wrought AA7075-T6, whereby dissolution rates were generally lower for additively manufactured AA7075. Furthermore, immersion exposure testing followed by microscopy, indicated different corrosion morphology for additively manufactured AA7075, whereby resultant pit size was notably smaller, in contrast to wrought AA7075-T6.Comment: 37 pages, includes 4 Tables and 11 Figure
    • …
    corecore