290 research outputs found

    Dynamics analysis and integrated design of real-time control systems

    Get PDF
    Real-time control systems are widely deployed in many applications. Theory and practice for the design and deployment of real-time control systems have evolved significantly. From the design perspective, control strategy development has been the focus of the research in the control community. In order to develop good control strategies, process modelling and analysis have been investigated for decades, and stability analysis and model-based control have been heavily studied in the literature. From the implementation perspective, real-time control systems require timeliness and predictable timing behaviour in addition to logical correctness, and a real-time control system may behave very differently with different software implementations of the control strategies on a digital controller, which typically has limited computing resources. Most current research activities on software implementations concentrate on various scheduling methodologies to ensure the schedulability of multiple control tasks in constrained environments. Recently, more and more real-time control systems are implemented over data networks, leading to increasing interest worldwide in the design and implementation of networked control systems (NCS). Major research activities in NCS include control-oriented and scheduling-oriented investigations. In spite of significant progress in the research and development of real-time control systems, major difficulties exist in the state of the art. A key issue is the lack of integrated design for control development and its software implementation. For control design, the model-based control technique, the current focus of control research, does not work when a good process model is not available or is too complicated for control design. For control implementation on digital controllers running multiple tasks, the system schedulability is essential but is not enough; the ultimate objective of satisfactory quality-of-control (QoC) performance has not been addressed directly. For networked control, the majority of the control-oriented investigations are based on two unrealistic assumptions about the network induced delay. The scheduling-oriented research focuses on schedulability and does not directly link to the overall QoC of the system. General solutions with direct QoC consideration from the network perspective to the challenging problems of network delay and packet dropout in NCS have not been found in the literature. This thesis addresses the design and implementation of real-time control systems with regard to dynamics analysis and integrated design. Three related areas have been investigated, namely control development for controllers, control implementation and scheduling on controllers, and real-time control in networked environments. Seven research problems are identified from these areas for investigation in this thesis, and accordingly seven major contributions have been claimed. Timing behaviour, quality of control, and integrated design for real-time control systems are highlighted throughout this thesis. In control design, a model-free control technique, pattern predictive control, is developed for complex reactive distillation processes. Alleviating the requirement of accurate process models, the developed control technique integrates pattern recognition, fuzzy logic, non-linear transformation, and predictive control into a unified framework to solve complex problems. Characterising the QoC indirectly with control latency and jitter, scheduling strategies for multiple control tasks are proposed to minimise the latency and/or jitter. Also, a hierarchical, QoC driven, and event-triggering feedback scheduling architecture is developed with plug-ins of either the earliest-deadline-first or fixed priority scheduling. Linking to the QoC directly, the architecture minimises the use of computing resources without sacrifice of the system QoC. It considers the control requirements, but does not rely on the control design. For real-time NCS, the dynamics of the network delay are analysed first, and the nonuniform distribution and multi-fractal nature of the delay are revealed. These results do not support two fundamental assumptions used in existing NCS literature. Then, considering the control requirements, solutions are provided to the challenging NCS problems from the network perspective. To compensate for the network delay, a real-time queuing protocol is developed to smooth out the time-varying delay and thus to achieve more predictable behaviour of packet transmissions. For control packet dropout, simple yet effective compensators are proposed. Finally, combining the queuing protocol, the packet loss compensation, the configuration of the worst-case communication delay, and the control design, an integrated design framework is developed for real-time NCS. With this framework, the network delay is limited to within a single control period, leading to simplified system analysis and improved QoC

    Mixed-criticality real-time task scheduling with graceful degradation

    Get PDF
    ”The mixed-criticality real-time systems implement functionalities of different degrees of importance (or criticalities) upon a shared platform. In traditional mixed-criticality systems, under a hi mode switch, no guaranteed service is provided to lo-criticality tasks. After a mode switch, only hi-criticality tasks are considered for execution while no guarantee is made to the lo-criticality tasks. However, with careful optimistic design, a certain degree of service guarantee can be provided to lo-criticality tasks upon a mode switch. This concept is broadly known as graceful degradation. Guaranteed graceful degradation provides a better quality of service as well as it utilizes the system resource more efficiently. In this thesis, we study two efficient techniques of graceful degradation. First, we study a mixed-criticality scheduling technique where graceful degradation is provided in the form of minimum cumulative completion rates. We present two easy-to-implement admission-control algorithms to determine which lo-criticality jobs to complete in hi mode. The scheduling is done by following deadline virtualization, and two heuristics are shown for virtual deadline settings. We further study the schedulability analysis and the backward mode switch conditions, which are proposed and proved in (Guo et al., 2018). Next, we present a probabilistic scheduling technique for mixed-criticality tasks on multiprocessor systems where a system-wide permitted failure probability is known. The schedulability conditions are derived along with the processor allocation scheme. The work is extended from (Guo et al., 2015), where the probabilistic model is first introduced for independent task scheduling on a uniprocessor platform. We further consider the failure dependency between tasks while scheduling on multiprocessor platforms. We provide related theoretical analysis to show the correctness of our work. To show the effectiveness of our proposed techniques, we conduct a detailed experimental evaluation under different circumstances”--Abstract, page iii

    Network Latency and Packet Delay Variation in Cyber-physical Systems

    Get PDF
    The problem addressed in this paper is the limitation imposed by network elements, especially Ethernet elements, on the real-time performance of time-critical systems. Most current network elements are concerned only with data integrity, connection, and throughput with no mechanism for enforcing temporal semantics. Existing safety-critical applications and other applications in industry require varying degrees of control over system-wide temporal semantics. In addition, there are emerging commercial applications that require or will benefit from tighter enforcement of temporal semantics in network elements than is currently possible. This paper examines these applications and requirements and suggests possible approaches to imposing temporal semantics on networks. Model-based design and simulation is used to evaluate the effects of network limitations on time-critical systems

    Distributed task allocation optimisation techniques in multi-agent systems

    Get PDF
    A multi-agent system consists of a number of agents, which may include software agents, robots, or even humans, in some application environment. Multi-robot systems are increasingly being employed to complete jobs and missions in various fields including search and rescue, space and underwater exploration, support in healthcare facilities, surveillance and target tracking, product manufacturing, pick-up and delivery, and logistics. Multi-agent task allocation is a complex problem compounded by various constraints such as deadlines, agent capabilities, and communication delays. In high-stake real-time environments, such as rescue missions, it is difficult to predict in advance what the requirements of the mission will be, what resources will be available, and how to optimally employ such resources. Yet, a fast response and speedy execution are critical to the outcome. This thesis proposes distributed optimisation techniques to tackle the following questions: how to maximise the number of assigned tasks in time restricted environments with limited resources; how to reach consensus on an execution plan across many agents, within a reasonable time-frame; and how to maintain robustness and optimality when factors change, e.g. the number of agents changes. Three novel approaches are proposed to address each of these questions. A novel algorithm is proposed to reassign tasks and free resources that allow the completion of more tasks. The introduction of a rank-based system for conflict resolution is shown to reduce the time for the agents to reach consensus while maintaining equal number of allocations. Finally, this thesis proposes an adaptive data-driven algorithm to learn optimal strategies from experience in different scenarios, and to enable individual agents to adapt their strategy during execution. A simulated rescue scenario is used to demonstrate the performance of the proposed methods compared with existing baseline methods
    • …
    corecore