20 research outputs found

    In Defense of Wireless Carrier Sense

    Get PDF
    Carrier sense is often used to regulate concurrency in wireless medium access control (MAC) protocols, balancing interference protection and spatial reuse. Carrier sense is known to be imperfect, and many improved techniques have been proposed. Is the search for a replacement justified? This paper presents a theoretical model for average case two-sender carrier sense based on radio propagation theory and Shannon capacity. Analysis using the model shows that carrier sense performance is surprisingly close to optimal for radios with adaptive bitrate. The model suggests that hidden and exposed terminals usually cause modest reductions in throughput rather than dramatic decreases. Finally, it is possible to choose a fixed sense threshold which performs well across a wide range of scenarios, in large part due to the role of the noise floor. Experimental results from an indoor 802.11 testbed support these claims

    Traffic Management in LTE-WiFi Slicing Networks

    Get PDF
    Proliferation of the number of smart devices and user applications has generated a tremendous volume of data traffic from/to a cellular network. With a traditional cellular network, a user may experience many drawbacks such as low throughput, large latencies and network outages due to overload of data traffic. The software defined networking (SDN) and network function virtualization (NFV) rise as a promising solution to overcome such issues of traditional network architecture. In this paper, we introduce a new network architecture for LTE and WiFi slicing networks taking into account the advantage of SDN and NFV concepts. We propose an IP-Flow management controller in a slicing network to offload and balance the data traffic flow. By utilizing the P-GW and Wireless Access Gateway, we can handle the IP-Flow between LTE and WiFi networks. The P-GW works as an IP-Flow anchor to maintain the flow seamlessly during the offloading and balancing IP-Flow. Within WiFi networks, we leverage the Light Virtual Access Point (LVAP) approach to abstract the WiFi protocol stack for a programming capability of centralized control of WiFi network through the WiFi controller. By creating a client virtual port and assigning a specific Service Set Identifier (SSID), we give a capability to slice an operator’s network to control over his clients within a WiFi coverage area network

    IEEE 802.11 parameters adaptation for Performance enhancement in high density Wireless networks

    Get PDF
    Tribunal : Ramón Agüero, Álvaro Martín, Federico LarrocaNowadays, it is common to find wireless networks that are based on the IEEE 802.11 standard deployed in an unplanned and unmanaged manner. Moreover, because of the low hardware cost and, trying to obtain optimal coverage and performance, a large number of devices are usually installed in reduced spaces generating high-density deployments. This kind of networks experiment a myriad of problems (e.g., interference, medium access control, etc.) related with the shared nature of the transmission medium. In recent years, different physical-layer- and link-layer-adaptation mechanisms have been proposed to palliate those problems, however, their feedback-loop-based behaviour in a highly complex RF medium makes their performance hard to assess. In this work, we study the problems of high-density networks, experimentally evaluate some existing solutions and propose a new adaptation mechanism, PRCS, that tackles some common weakness of those solutions. PRCS control the transmit power, the data rate, and the carrier sense threshold of APs of a wireless network so as to mitigate the effects of interference in high-density deployments without causing unfairness between links. In simulation-based experiments, PRCS outperforms similar existing mechanisms in various scenarios and in a particular scenario, where most mechanisms fail, duplicates global network throughput.En la actualidad, es muy común encontrar redes inalámbricas basadas en el estándar IEEE 802.11 desplegadas de manera no planificada ni gestionada. Además, debido al bajo costo de los dispositivos y con la intención de obtener una cobertura y rendimiento óptimos, un gran número de dispositivos son instalados en espacios reducidos, generado despliegues de alta densidad. Este tipo de redes experimentan una gran variedad de problemas (por ej., interferencia, control de acceso al medio, etc.) relacionados con el hecho de que utilizan un medio de transmisión compartido. En los últimos años, diferentes mecanismos de adaptación de parámetros de la capa física y de enlace han sido propuestos con el objetivo de mitigar estos problemas. Estas soluciones adaptan parámetros tales como la potencia de transmisión o la tasa de transmisión. En este trabajo, estudiamos los problemas de las redes inalámbricas de alta densidad, evaluamos mediante experimentos algunas de las soluciones existentes y proponemos un nuevo mecanismo de adaptación, PRCS, que aborda algunas de las debilidades de estas soluciones. PRCS controla la potencia de transmisión, la tasa de transmisión y el umbral del mecanismo de sensado de portadora de los puntos de acceso de una red inalámbrica. El objetivo de este mecanismo es mitigar los efectos de la interferencia en despliegues de alta densidad sin causar asimetrías entre los enlaces. En experimentos basados en simulaciones, mostramos que PRCS supera a los mecanismos existentes en varios escenarios y, en un escenario en particular donde la mayoría de los mecanismos fallan, duplica el rendimiento global de la red

    Parameterizing Enterprise WiFi Networks: The Use of Wide Channels

    Get PDF
    We investigate the joint channel, power, and carrier sensing threshold allocation problem in IEEE 802.11ac enterprise networks in a single 160 MHz band and show that the current practice, which is to use narrower channels at maximum power when the network is dense, yields much worse performance than a solution using the widest possible channel (i.e., 160 MHz) with a much lower power. This finding is consistent with cellular networks which use a reuse factor of one. Based on these insights, we propose and evaluate an algorithm that allocates the widest channel to all Access Points, and finds the appropriate transmission power and carrier sensing threshold for each of them to provide an efficient and fair solution to a managed IEEE 802.11ac enterprise network. The performance gains with respect to the best of the two benchmarks that we consider range from 60% in not too dense deployments to more than 200% in dense deployments

    Interference Management in Dense 802.11 Networks

    Get PDF
    Wireless networks are growing at a phenomenal rate. This growth is causing an overcrowding of the unlicensed RF spectrum, leading to increased interference between co-located devices. Existing decentralized medium access control (MAC) protocols (e.g. IEEE 802.11a/b/g standards) are poorly designed to handle interference in such dense wireless environments. This is resulting in networks with poor and unpredictable performance, especially for delay-sensitive applications such as voice and video. This dissertation presents a practical conflict-graph (CG) based approach to designing self-organizing enterprise wireless networks (or WLANs) where interference is centrally managed by the network infrastructure. The key idea is to use potential interference information (available in the CG) as an input to algorithms that optimize the parameters of the WLAN.We demonstrate this idea in three ways. First, we design a self-organizing enterprise WLAN and show how the system enhances performance over non-CG based schemes, in a high fidelity network simulator. Second, we build a practical system for conflict graph measurement that can precisely measure interference (for a given network configuration) in dense wireless environments. Finally, we demonstrate the practical benefits of the conflict graph system by using it in an optimization framework that manages associations and traffic for mobile VoIP clients in the enterprise. There are a number of contributions of this dissertation. First, we show the practical application of conflict graphs for infrastructure-based interference management in dense wireless networks. A prototype design exhibits throughput gains of up to 50% over traditional approaches. Second, we develop novel schemes for designing a conflict graph measurement system for enterprise WLANs that can detect interference at microsecond-level timescales and with little network overhead. This allows us to compute the conflict graph up to 400 times faster as compared to the current best practice proposed in the literature. The system does not require any modifications to clients or any specialized hardware for its operation. Although the system is designed for enterprise WLANs, the proposed techniques and corresponding results are applicable to other wireless systems as well (e.g. wireless mesh networks). Third, our work opens up the space for designing novel fine-grained interference-aware protocols/algorithms that exploit the ability to compute the conflict graph at small timescales. We demonstrate an instance of such a system with the design and implementation of an architecture that dynamically manages client associations and traffic in an enterprise WLAN. We show how mobile clients sustain uninterrupted and consistent VoIP call quality in the presence of background interference for the duration of their VoIP sessions

    A Self-Management Approach to Configuring Wireless Infrastructure Networks

    Get PDF
    Wireless infrastructure networks provide high-speed wireless connectivity over a small geographical area. The rapid proliferation of such networks makes their management not only more important but also more difficult. Denser network deployments lead to increased wireless contention and greater opportunities for RF interference, thereby decreasing performance. In the past, wireless site surveys and simplified wireless propagation models have been used to design and configure wireless systems. However, these techniques have been largely unsuccessful due to the dynamic nature of the wireless medium. More recently, there has been work on dynamically configurable systems that can adapt to changes in the surrounding environment. These systems improve on previous approaches but are still not adequate as their solutions make unrealistic assumptions about the operating environment. Nevertheless, even with these simplified models, the network design and configuration problems are inherently complex and require tradeoffs among competing requirements. In this thesis, we study a self-management system that can adjust system parameters dynamically. We present a system that does not impose any restrictions on the operating environment, is incrementally deployable, and also backwards compatible. In doing so, we propose, (i) framework for modeling system performance based on utility functions, (ii) novel approach to measuring the utility of a given set of configuration parameters, and (iii) optimization techniques for generating and refining system configurations to maximize utility. Although our utility-function framework is able to capture a variety of optimization metrics, in this study, we focus specifically on maximizing network throughput and minimizing inter-cell interference. Moreover, although many different techniques can be used for optimizing system performance, we focus only on transmit-power control and channel assignment. We evaluate our proposed architecture in simulation and show that our solution is not only feasible, but also provides significant improvements over existing approaches
    corecore