123 research outputs found

    Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest

    Get PDF
    The automatic detection of pulse during out-of-hospital cardiac arrest (OHCA) is necessary for the early recognition of the arrest and the detection of return of spontaneous circulation (end of the arrest). The only signal available in every single defibrillator and valid for the detection of pulse is the electrocardiogram (ECG). In this study we propose two deep neural network (DNN) architectures to detect pulse using short ECG segments (5 s), i.e., to classify the rhythm into pulseless electrical activity (PEA) or pulse-generating rhythm (PR). A total of 3914 5-s ECG segments, 2372 PR and 1542 PEA, were extracted from 279 OHCA episodes. Data were partitioned patient-wise into training (80%) and test (20%) sets. The first DNN architecture was a fully convolutional neural network, and the second architecture added a recurrent layer to learn temporal dependencies. Both DNN architectures were tuned using Bayesian optimization, and the results for the test set were compared to state-of-the art PR/PEA discrimination algorithms based on machine learning and hand crafted features. The PR/PEA classifiers were evaluated in terms of sensitivity (Se) for PR, specificity (Sp) for PEA, and the balanced accuracy (BAC), the average of Se and Sp. The Se/Sp/BAC of the DNN architectures were 94.1%/92.9%/93.5% for the first one, and 95.5%/91.6%/93.5% for the second one. Both architectures improved the performance of state of the art methods by more than 1.5 points in BAC.This work was supported by: The Spanish Ministerio de EconomΓ­a y Competitividad, TEC2015-64678-R, jointly with the Fondo Europeo de Desarrollo Regional (FEDER), UPV/EHU via GIU17/031 and the Basque Government through the grant PRE_2018_2_0260

    Towards the Prediction of Rearrest during Out-of-Hospital Cardiac Arrest

    Get PDF
    A secondary arrest is frequent in patients that recover spontaneous circulation after an out-of-hospital cardiac arrest (OHCA). Rearrest events are associated to worse patient outcomes, but little is known on the heart dynamics that lead to rearrest. The prediction of rearrest could help improve OHCA patient outcomes. The aim of this study was to develop a machine learning model to predict rearrest. A random forest classifier based on 21 heart rate variability (HRV) and electrocardiogram (ECG) features was designed. An analysis interval of 2 min after recovery of spontaneous circulation was used to compute the features. The model was trained and tested using a repeated cross-validation procedure, on a cohort of 162 OHCA patients (55 with rearrest). The median (interquartile range) sensitivity (rearrest) and specificity (no-rearrest) of the model were 67.3% (9.1%) and 67.3% (10.3%), respectively, with median areas under the receiver operating characteristics and the precision–recall curves of 0.69 and 0.53, respectively. This is the first machine learning model to predict rearrest, and would provide clinically valuable information to the clinician in an automated way.This work was supported by the Spanish Ministerio de Ciencia, InnovaciΓ³n y Universidades through grant RTI2018-101475-BI00, jointly with the Fondo Europeo de Desarrollo Regional (FEDER), and by the Basque Government through grants IT1229-19, PRE_2019_2_0100 and PRE_2019_1_0262. A.I. receives research grants from the US National Institutes of Health (NIH)

    A Machine Learning Model for the Prognosis of Pulseless Electrical Activity during Out-of-Hospital Cardiac Arrest

    Get PDF
    Pulseless electrical activity (PEA) is characterized by the disassociation of the mechanical and electrical activity of the heart and appears as the initial rhythm in 20–30% of out-of-hospital cardiac arrest (OHCA) cases. Predicting whether a patient in PEA will convert to return of spontaneous circulation (ROSC) is important because different therapeutic strategies are needed depending on the type of PEA. The aim of this study was to develop a machine learning model to differentiate PEA with unfavorable (unPEA) and favorable (faPEA) evolution to ROSC. An OHCA dataset of 1921 5s PEA signal segments from defibrillator files was used, 703 faPEA segments from 107 patients with ROSC and 1218 unPEA segments from 153 patients with no ROSC. The solution consisted of a signal-processing stage of the ECG and the thoracic impedance (TI) and the extraction of the TI circulation component (ICC), which is associated with ventricular wall movement. Then, a set of 17 features was obtained from the ECG and ICC signals, and a random forest classifier was used to differentiate faPEA from unPEA. All models were trained and tested using patientwise and stratified 10-fold cross-validation partitions. The best model showed a median (interquartile range) area under the curve (AUC) of 85.7(9.8)% and a balance accuracy of 78.8(9.8)% , improving the previously available solutions at more than four points in the AUC and three points in balanced accuracy. It was demonstrated that the evolution of PEA can be predicted using the ECG and TI signals, opening the possibility of targeted PEA treatment in OHCA.This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades through Grant RTI2018-101475-BI00, jointly with the Fondo Europeo de Desarrollo Regional (FEDER), by the Basque Government through Grant IT1229-19 and Grant PRE2020_1_0177, and by the university of the Basque Country (UPV/EHU) under Grant COLAB20/01

    Classification of Atrial Fibrillation using Random Forest Algorithm

    Get PDF
    The electrocardiogram is indicates the electrical activity of the heart and it can be used to detect cardiac arrhythmias. In the present work, we exhibited a methodology to classify Atrial Fibrillation (AF), Normal rhythm, and Other abnormal ECG rhythms using a machine learning algorithm by analyzing single-lead ECG signals of short duration. First, the events of ECG signals will be detected, after that morphological features and HRV features are extracted. Finally, these features are applied to the Random Forest classifier to perform classification. The Physionet challenge 2017 dataset with more than 8500 ECG recordings is used to train our model. The proposed methodology yields an F1 score of 0.86, 0.97, and 0.83 respectively in classifying AF, normal, other rhythms, and an accuracy of 0.91 after performing a 5-fold cross-validation

    Machine learning and signal processing contributions to identify circulation states during out-of-hospital cardiac arrest

    Get PDF
    212 p. (eusk) 216 p. (eng.)Bat-bateko bihotz geldialdia (BBG) ustekabeko bihotz jardueraren etenaldi gisa definitzen da [9], non odol perfusioa ez baita iristenez burmuinera, ez beste ezinbesteko organoetara. BBGa ahalik eta azkarren tratatu behar da berpizte terapien bidez bat-bateko bihotz heriotza (BBH) ekiditeko [10, 11]. Ohikoena BBGa ospitalez kanpoko inguruneetan gertatzea da [12] eta kasu gehienetan ez da lekukorik egoten [13]. Horregatik, berpizte terapien aplikazio goiztiarra erronka mediku eta soziala da gaur egun

    Seinale prozesaketan eta ikasketa automatikoan oinarritutako ekarpenak bihotz-erritmoen analisirako bihotz-biriketako berpiztean

    Get PDF
    Tesis inglΓ©s 218 p. -- Tesis euskera 220 p.Out-of-hospital cardiac arrest (OHCA ) is characterized by the sudden loss of the cardiac function, andcauses around 10% of the total mortality in developed countries. Survival from OHCA depends largelyon two factors: early defibrillation and early cardiopulmonary resuscitation (CPR). The electrical shock isdelivered using a shock advice algorithm (SAA) implemented in defibrillators. Unfortunately, CPR mustbe stopped for a reliable SAA analysis because chest compressions introduce artefacts in the ECG. Theseinterruptions in CPR have an adverse effect on OHCA survival. Since the early 1990s, many efforts havebeen made to reliably analyze the rhythm during CPR. Strategies have mainly focused on adaptive filtersto suppress the CPR artefact followed by SAAs of commercial defibrillators. However, these solutionsdid not meet the American Heart AssociationΒΏs (AHA) accuracy requirements for shock/no-shockdecisions. A recent approach, which replaces the commercial SAA by machine learning classifiers, hasdemonstrated that a reliable rhythm analysis during CPR is possible. However, defibrillation is not theonly treatment needed during OHCA, and depending on the clinical context a finer rhythm classificationis needed. Indeed, an optimal OHCA scenario would allow the classification of the five cardiac arrestrhythm types that may be present during resuscitation. Unfortunately, multiclass classifiers that allow areliable rhythm analysis during CPR have not yet been demonstrated. On all of these studies artefactsoriginate from manual compressions delivered by rescuers. Mechanical compression devices, such as theLUCAS or the AutoPulse, are increasingly used in resuscitation. Thus, a reliable rhythm analysis duringmechanical CPR is becoming critical. Unfortunately, no AHA compliant algorithms have yet beendemonstrated during mechanical CPR. The focus of this thesis work is to provide new or improvedsolutions for rhythm analysis during CPR, including shock/no-shock decision during manual andmechanical CPR and multiclass classification during manual CPR

    ΠžΠ±Π·ΠΎΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² автоматичСской диагностики сСрдСчной Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ для принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΎ нСобходимости провСдСния дСфибрилляции

    Get PDF
    Ventricular fibrillation is considered the most common cause of sudden cardiac arrest. The fibrillation, and ventricular tachycardia often preceding it, are cardiac rhythms that may respond to emergency electroshock therapy and return to normal sinus rhythm when diagnosed early after cardiac arrest with the restoration of adequate cardiac pumping function. However, manually checking ECG signals on the existence of a pattern of such arrhythmias is a risky and time-consuming task in stressful situations and practically impossible in the absence of a qualified medical specialist. Therefore, systems of the computer classification of arrhythmias with the function of making a decision on the necessity of electric cardioversion with the parameters of a high-voltage pulse calculated adaptively for each patient are widely used for the automatic diagnosis of such conditions. This paper discusses methods of analyzing the electrocardiographic signal taken from the electrodes of an external automatic or semi-automatic defibrillator in order to make a decision on the necessity for defibrillation, which are applicable in the embedded software of automatic and semiautomatic external defibrillators. The paper includes an overview of applicable filtering techniques as well as subsequent algorithms for extracting, classifying and compressing features for the ECG signal.Β Β Lipchak D. A., Chupov A. A. Methods of Signal Analysis for Automatic Diagnosis of Shockable Cardiac Arrhythmias: A Review. Ural Radio Engineering Journal. 2021;5(4):380–409. (In Russ.) DOI: 10.15826/ urej.2021.5.4.004. Ѐибрилляция ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠΎΠ² сСрдца считаСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰Π΅ΠΉΡΡ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎΠΉ остановки сСрдца. Вакая фибрилляция ΠΈ часто ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π΅ΠΉ ТСлудочковая тахикардия – это Ρ€ΠΈΡ‚ΠΌΡ‹ сСрдца, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π΅Π°Π³ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° ΡΠΊΡΡ‚Ρ€Π΅Π½Π½ΡƒΡŽ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡˆΠΎΠΊΠΎΠ²ΡƒΡŽ Ρ‚Π΅Ρ€Π°ΠΏΠΈΡŽ ΠΈ Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒΡΡ ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ синусовому Ρ€ΠΈΡ‚ΠΌΡƒ ΠΏΡ€ΠΈ Ρ€Π°Π½Π½Π΅ΠΉ диагностикС послС остановки сСрдца с восстановлСниСм Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠΉ насосной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сСрдца. Однако ручная ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° сигналов Π­ΠšΠ“ Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Π° Ρ‚Π°ΠΊΠΎΠΉ Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ являСтся слоТной аналитичСской Π·Π°Π΄Π°Ρ‡Π΅ΠΉ, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰Π΅ΠΉ Π½Π΅ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² стрСссовой ситуации, практичСски Π½Π΅Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌΠΎΠΉ Π² отсутствиС ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ мСдицинского спСциалиста. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для автоматичСской диагностики острых состояний ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ систСмы ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ классификации Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΉ с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎ нСобходимости провСдСния элСктрокардиотСрапии с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°, вычислСнного Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСны ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° элСктрокардиографичСского сигнала, снимаСмого с элСктродов Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠ³ΠΎ автоматичСского ΠΈΠ»ΠΈ полуавтоматичСского дСфибриллятора, с Ρ†Π΅Π»ΡŒΡŽ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎ нСобходимости оказания дСфибрилляции, ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹Π΅ Π²ΠΎ встроСнном ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ обСспСчСнии автоматичСских ΠΈ полуавтоматичСских Π²Π½Π΅ΡˆΠ½ΠΈΡ… дСфибрилляторов. Π Π°Π±ΠΎΡ‚Π° Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΠΎΠ±Π·ΠΎΡ€ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² извлСчСния, классификации ΠΈ сТатия Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² для сигнала Π­ΠšΠ“.Β Β Π›ΠΈΠΏΡ‡Π°ΠΊ Π”. А., Π§ΡƒΠΏΠΎΠ² А. А. ΠžΠ±Π·ΠΎΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² автоматичСской диагностики сСрдСчной Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ для принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΎ нСобходимости провСдСния дСфибрилляции. Ural Radio Engineering Journal. 2021;5(4):380–409. DOI: 10.15826/urej.2021.5.4.004.

    Ventricular Fibrillation and Tachycardia Detection Using Features Derived from Topological Data Analysis

    Get PDF
    A rapid and accurate detection of ventricular arrhythmias is essential to take appropriate therapeutic actions when cardiac arrhythmias occur. Furthermore, the accurate discrimination between arrhythmias is also important, provided that the required shocking therapy would not be the same. In this work, the main novelty is the use of the mathematical method known as Topological Data Analysis (TDA) to generate new types of features which can contribute to the improvement of the detection and classification performance of cardiac arrhythmias such as Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT). The electrocardiographic (ECG) signals used for this evaluation were obtained from the standard MIT-BIH and AHA databases. Two input data to the classify are evaluated: TDA features, and Persistence Diagram Image (PDI). Using the reduced TDA-obtained features, a high average accuracy near 99% was observed when discriminating four types of rhythms (98.68% to VF; 99.05% to VT; 98.76% to normal sinus; and 99.09% to Other rhythms) with specificity values higher than 97.16% in all cases. In addition, a higher accuracy of 99.51% was obtained when discriminating between shockable (VT/VF) and non-shockable rhythms (99.03% sensitivity and 99.67% specificity). These results show that the use of TDA-derived geometric features, combined in this case this the k-Nearest Neighbor (kNN) classifier, raises the classification performance above results in previous works. Considering that these results have been achieved without preselection of ECG episodes, it can be concluded that these features may be successfully introduced in Automated External Defibrillation (AED) and Implantable Cardioverter Defibrillation (ICD) therapie
    • …
    corecore