15 research outputs found

    Human Health Engineering Volume II

    Get PDF
    In this Special Issue on “Human Health Engineering Volume II”, we invited submissions exploring recent contributions to the field of human health engineering, i.e., technology for monitoring the physical or mental health status of individuals in a variety of applications. Contributions could focus on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main parts of the monitoring and control engineering scheme applied to human health applications, namely papers focusing on measuring/sensing physiological variables, papers highlighting health-monitoring applications, and examples of control and process management applications for human health. In comparison to biomedical engineering, we envision that the field of human health engineering will also cover applications for healthy humans (e.g., sports, sleep, and stress), and thus not only contribute to the development of technology for curing patients or supporting chronically ill people, but also to more general disease prevention and optimization of human well-being

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    Electroencephalogram Signal Processing For Hybrid Brain Computer Interface Systems

    Get PDF
    The goal of this research was to evaluate and compare three types of brain computer interface (BCI) systems, P300, steady state visually evoked potentials (SSVEP) and Hybrid as virtual spelling paradigms. Hybrid BCI is an innovative approach to combine the P300 and SSVEP. However, it is challenging to process the resulting hybrid signals to extract both information simultaneously and effectively. The major step executed toward the advancement to modern BCI system was to move the BCI techniques from traditional LED system to electronic LCD monitor. Such a transition allows not only to develop the graphics of interest but also to generate objects flickering at different frequencies. There were pilot experiments performed for designing and tuning the parameters of the spelling paradigms including peak detection for different range of frequencies of SSVEP BCI, placement of objects on LCD monitor, design of the spelling keyboard, and window time for the SSVEP peak detection processing. All the experiments were devised to evaluate the performance in terms of the spelling accuracy, region error, and adjacency error among all of the paradigms: P300, SSVEP and Hybrid. Due to the different nature of P300 and SSVEP, designing a hybrid P300-SSVEP signal processing scheme demands significant amount of research work in this area. Eventually, two critical questions in hybrid BCl are: (1) which signal processing strategy can best measure the user\u27s intent and (2) what a suitable paradigm is to fuse these two techniques in a simple but effective way. In order to answer these questions, this project focused mainly on developing signal processing and classification technique for hybrid BCI. Hybrid BCI was implemented by extracting the specific information from brain signals, selecting optimum features which contain maximum discrimination information about the speller characters of our interest and by efficiently classifying the hybrid signals. The designed spellers were developed with the aim to improve quality of life of patients with disability by utilizing visually controlled BCI paradigms. The paradigms consist of electrodes to record electroencephalogram signal (EEG) during stimulation, a software to analyze the collected data, and a computing device where the subject’s EEG is the input to estimate the spelled character. Signal processing phase included preliminary tasks as preprocessing, feature extraction, and feature selection. Captured EEG data are usually a superposition of the signals of interest with other unwanted signals from muscles, and from non-biological artifacts. The accuracy of each trial and average accuracy for subjects were computed. Overall, the average accuracy of the P300 and SSVEP spelling paradigm was 84% and 68.5 %. P300 spelling paradigms have better accuracy than both the SSVEP and hybrid paradigm. Hybrid paradigm has the average accuracy of 79 %. However, hybrid system is faster in time and more soothing to look than other paradigms. This work is significant because it has great potential for improving the BCI research in design and application of clinically suitable speller paradigm

    Antioxidant and DPPH-Scavenging Activities of Compounds and Ethanolic Extract of the Leaf and Twigs of Caesalpinia bonduc L. Roxb.

    Get PDF
    Antioxidant effects of ethanolic extract of Caesalpinia bonduc and its isolated bioactive compounds were evaluated in vitro. The compounds included two new cassanediterpenes, 1α,7α-diacetoxy-5α,6β-dihydroxyl-cass-14(15)-epoxy-16,12-olide (1)and 12α-ethoxyl-1α,14β-diacetoxy-2α,5α-dihydroxyl cass-13(15)-en-16,12-olide(2); and others, bonducellin (3), 7,4’-dihydroxy-3,11-dehydrohomoisoflavanone (4), daucosterol (5), luteolin (6), quercetin-3-methyl ether (7) and kaempferol-3-O-α-L-rhamnopyranosyl-(1Ç2)-β-D-xylopyranoside (8). The antioxidant properties of the extract and compounds were assessed by the measurement of the total phenolic content, ascorbic acid content, total antioxidant capacity and 1-1-diphenyl-2-picryl hydrazyl (DPPH) and hydrogen peroxide radicals scavenging activities.Compounds 3, 6, 7 and ethanolic extract had DPPH scavenging activities with IC50 values of 186, 75, 17 and 102 μg/ml respectively when compared to vitamin C with 15 μg/ml. On the other hand, no significant results were obtained for hydrogen peroxide radical. In addition, compound 7 has the highest phenolic content of 0.81±0.01 mg/ml of gallic acid equivalent while compound 8 showed the highest total antioxidant capacity with 254.31±3.54 and 199.82±2.78 μg/ml gallic and ascorbic acid equivalent respectively. Compound 4 and ethanolic extract showed a high ascorbic acid content of 2.26±0.01 and 6.78±0.03 mg/ml respectively.The results obtained showed the antioxidant activity of the ethanolic extract of C. bonduc and deduced that this activity was mediated by its isolated bioactive compounds
    corecore