5,173 research outputs found

    ECG reduction for wearable sensor

    Get PDF
    The transmission, storage and analysis of electrocardiogram (ECG) data in real-time is essential for remote patient monitoring with wearable ECG devices and mobile ECG contexts. However, this remains a challenge to achieve within the processing power and the storage capacity of mobile devices. ECG reduction algorithms have an important role to play in reducing the processing requirements for mobile devices, however many existing ECG reduction and compression algorithms are computationally expensive to execute in mobile devices and have not been designed for real-time computation and incremental data arrival. In this paper, we describe a computationally naive, yet effective, algorithm that achieves high ECG reduction rates while maintaining key diagnostic features including PR, QRS, ST, QT and RR intervals. While reduction does not enable ECG waves to be reproduced, the ability to transmit key indicators (diagnostic features) using minimal computational resources, is particularly useful in mobile health contexts involving power constrained sensors and devices. Results of the proposed reduction algorithm indicate that the proposed algorithm outperforms other ECG reduction algorithms at a reduction/compression ratio (CR) of 5:1. If power or processing capacity is low, the algorithm can readily switch to a compression ratio of up to 10: 1 while still maintaining an error rate below 10%

    ECG Signal Reconstruction on the IoT-Gateway and Efficacy of Compressive Sensing Under Real-time Constraints

    Get PDF
    Remote health monitoring is becoming indispensable, though, Internet of Things (IoTs)-based solutions have many implementation challenges, including energy consumption at the sensing node, and delay and instability due to cloud computing. Compressive sensing (CS) has been explored as a method to extend the battery lifetime of medical wearable devices. However, it is usually associated with computational complexity at the decoding end, increasing the latency of the system. Meanwhile, mobile processors are becoming computationally stronger and more efficient. Heterogeneous multicore platforms (HMPs) offer a local processing solution that can alleviate the limitations of remote signal processing. This paper demonstrates the real-time performance of compressed ECG reconstruction on ARM's big.LITTLE HMP and the advantages they provide as the primary processing unit of the IoT architecture. It also investigates the efficacy of CS in minimizing power consumption of a wearable device under real-time and hardware constraints. Results show that both the orthogonal matching pursuit and subspace pursuit reconstruction algorithms can be executed on the platform in real time and yield optimum performance on a single A15 core at minimum frequency. The CS extends the battery life of wearable medical devices up to 15.4% considering ECGs suitable for wellness applications and up to 6.6% for clinical grade ECGs. Energy consumption at the gateway is largely due to an active internet connection; hence, processing the signals locally both mitigates system's latency and improves gateway's battery life. Many remote health solutions can benefit from an architecture centered around the use of HMPs, a step toward better remote health monitoring systems.Peer reviewedFinal Published versio

    Unsupervised Heart-rate Estimation in Wearables With Liquid States and A Probabilistic Readout

    Full text link
    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine intelligent approach for heart-rate estimation from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects are considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.Comment: 51 pages, 12 figures, 6 tables, 95 references. Under submission at Elsevier Neural Network

    An ECG-on-Chip with 535-nW/Channel Integrated Lossless Data Compressor for Wireless Sensors

    Get PDF
    This paper presents a low-power ECG recording system-on-chip (SoC) with on-chip low-complexity lossless ECG compression for data reduction in wireless/ambulatory ECG sensor devices. The chip uses a linear slope predictor for data compression, and incorporates a novel low-complexity dynamic coding-packaging scheme to frame the prediction error into fixed-length 16-bit format. The proposed technique achieves an average compression ratio of 2.25x on MIT/BIH ECG database. Implemented in a standard 0.35 um process, the compressor uses 0.565K gates/channel occupying 0.4 mm2 for four channels, and consumes 535 nW/channel at 2.4 V for ECG sampled at 512 Hz. Small size and ultra-low power consumption makes the proposed technique suitable for wearable ECG sensor applications

    On the Deployment of Healthcare Applications over Fog Computing Infrastructure

    Get PDF
    Fog computing is considered as the most promising enhancement of the traditional cloud computing paradigm in order to handle potential issues introduced by the emerging Interned of Things (IoT) framework at the network edge. The heterogeneous nature, the extensive distribution and the hefty number of deployed IoT nodes will disrupt existing functional models, creating confusion. However, IoT will facilitate the rise of new applications, with automated healthcare monitoring platforms being amongst them. This paper presents the pillars of design for such applications, along with the evaluation of a working prototype that collects ECG traces from a tailor-made device and utilizes the patient's smartphone as a Fog gateway for securely sharing them to other authorized entities. This prototype will allow patients to share information to their physicians, monitor their health status independently and notify the authorities rapidly in emergency situations. Historical data will also be available for further analysis, towards identifying patterns that may improve medical diagnoses in the foreseeable future

    Ultra-Thin Chip Package (UTCP) and stretchable circuit technologies for wearable ECG system

    Get PDF
    A comfortable, wearable wireless ECG monitoring system is proposed. The device is realized using the combination of two proprietary advanced technologies for electronic packaging and interconnection : the UTCP (Ultra-Thin Chip Package) technology and the SMI (Stretchable Mould Interconnect) technology for elastic and stretchable circuits. Introduction of these technologies results in small fully functional devices, exhibiting a significant increase in user comfort compared to devices fabricated with more conventional packaging and interconnection technologies

    Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure

    Get PDF
    Heart disease and stroke are becoming the leading cause of death worldwide. Electrocardiography monitoring devices (ECG) are the only tool that helps physicians diagnose cardiac abnormalities. Although the design of ECGs has followed closely the electronics miniaturization evolution over the years, existing wearable ECG have limited accuracy and rely on external resources to analyze the signal and evaluate heart activity. In this paper, we work towards empowering the wearable device with processing capabilities to locally analyze the signal and identify abnormal behavior. The ability to differentiate between normal and abnormal heart activity significantly reduces (a) the need to store the signals, (b) the data transmitted to the cloud and (c) the overall power consumption. Based on this concept, the HEART platform is presented that combines wearable embedded devices, mobile edge devices, and cloud services to provide on-the-spot, reliable, accurate and instant monitoring of the heart. The performance of the system is evaluated concerning the accuracy of detecting abnormal events and the power consumption of the wearable device. Results indicate that a very high percentage of success can be achieved in terms of event detection ratio and the device being operative up to a several days without the need for a recharge

    Review of sensors for remote patient monitoring

    Get PDF
    Remote patient monitoring (RPM) of physiological measurements can provide an efficient method and high quality care to patients. The physiological signals measurement is the initial and the most important factor in RPM. This paper discusses the characteristics of the most popular sensors, which are used to obtain vital clinical signals in prevalent RPM systems. The sensors discussed in this paper are used to measure ECG, heart sound, pulse rate, oxygen saturation, blood pressure and respiration rate, which are treated as the most important vital data in patient monitoring and medical examination

    Identification of sleep apnea events using discrete wavelet transform of respiration, ECG and accelerometer signals

    Get PDF
    Sleep apnea is a common sleep disorder in which patient sleep patterns are disrupted due to recurrent pauses in breathing or by instances of abnormally low breathing. Current gold standard tests for the detection of apnea events are costly and have the addition of long waiting times. This paper investigates the use of cheap and easy to use sensors for the identification of sleep apnea events. Combinations of respiration, electrocardiography (ECG) and acceleration signals were analysed. Results show that using features, formed using the discrete wavelet transform (DWT), from the ECG and acceleration signals provided the highest classification accuracy, with an F1 score of 0.914. However, the novel employment of just the accelerometer signal during classification provided a comparable F1 score of 0.879. By employing one or a combination of the analysed sensors a preliminary test for sleep apnea, prior to the requirement for gold standard testing, can be performed
    corecore