6,606 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Overview of Biosignal Analysis Methods for the Assessment of Stress

    Get PDF
    Objectives: Stress is a normal reaction of the human organism induced in situations that demand a level of activation. This reaction has both positive and negative impact on the life of each individual. Thus, the problem of stress management is vital for the maintenance of a person’s psychological balance. This paper aims at the brief presentation   of stress definition and various factors that can lead to augmented stress levels. Moreover, a brief synopsis of biosignals that are used for the detection and categorization of stress and their analysis is presented. Methods: Several studies, articles and reviews were included after literature research. The main questions of the research were: the most important and widely used physiological signals for stress detection/assessment, the analysis methods for their manipulation and the implementation of signal analysis for stress detection/assessment in various developed systems.  Findings: The main conclusion is that current researching approaches lead to more sophisticated methods of analysis and more accurate systems of stress detection and assessment. However, the lack of a concrete framework towards stress detection and assessment remains a great challenge for the research community. Doi: 10.28991/esj-2021-01267 Full Text: PD

    A review of biophysiological and biochemical indicators of stress for connected and preventive healthcare

    Get PDF
    Stress is a known contributor to several life-threatening medical conditions and a risk factor for triggering acute cardiovascular events, as well as a root cause of several social problems. The burden of stress is increasing globally and, with that, is the interest in developing effective stress-monitoring solutions for preventive and connected health, particularly with the help of wearable sensing technologies. The recent development of miniaturized and flexible biosensors has enabled the development of connected wearable solutions to monitor stress and intervene in time to prevent the progression of stress-induced medical conditions. This paper presents a review of the literature on different physiological and chemical indicators of stress, which are commonly used for quantitative assessment of stress, and the associated sensing technologies

    The role of electrocardiography in occupational medicine, from einthoven’s invention to the digital era of wearable devices

    Get PDF
    Clinical-instrumental investigations, such as electrocardiography (ECG), represent a corollary of a procedures that, nowadays, is called upon as part of the principles of precision medicine. However when carrying out the professional routine examinations, most tend to ignore how a “simple” instrument can offer indispensable support in clinical practice, even in occupational medicine. The advent of the digital age, made of silicon and printed circuit boards, has allowed the miniaturization of the electronic components of these electro-medical devices. Finally, the adoption of patient wearables in medicine has been rapidly expanding worldwide for a number of years. This has been driven mainly by consumers’ demand to monitor their own health. With the ongoing research and development of new features capable of assessing and transmitting real-time biometric data, the impact of wearables on cardiovascular management has become inevitable. Despite the potential offered by this technology, as evident from the scientific literature, the application of these devices in the field of health and safety in the workplace is still limited. This may also be due to the lack of targeted scientific research. While offering great potential, it is very important to consider and evaluate ethical aspects related to the use of these smart devices, such as the management of the collected data relating to the physiological parameters and the location of the worker. This technology is to be considered as being aimed at monitoring the subject’s physiological parameters, and not at the diagnosis of any pathological condition, which should always be on charge of the medical specialist We conducted a review of the evolution of the role that electrophysiology plays as part of occupational health and safety management and on its possible future use, thanks to ongoing technological innovation

    Pametne uredske stolice sa senzorima za otkrivanje položaja i navika sjedenja – pregled literature

    Get PDF
    The health consequences of prolonged sitting in the office and other work chairs have recently been tried to be alleviated or prevented by the application of modern technologies. Smart technologies and sensors are installed in different parts of office chairs, which enables monitoring of seating patterns and prevents positions that potentially endanger the health of users. The aim of this paper is to provide an overview of previous research in the field of the application of smart technologies and sensors built into office and other types of chairs in order to prevent diseases. The articles published in the period 2010-2020 and indexed in WoS CC, Scopus, and IEEE Xplore databases, with the keywords “smart chair” and “sensor chair” were analysed. 15 articles were processed, with their research being based on the use of different types of sensors that determine the contact pressures between the user’s body and stool parts and recognise different body positions when sitting, which can prevent negative health consequences. Analysed papers prove that the use of smart technology and a better understanding of sitting, using various sensors and applications that read body pressure and determine the current body position, can act as preventive health care by detecting proper heart rate and beats per minute, the activity of individual muscle groups, proper breathing and estimates of blood oxygen levels. In the future research, it is necessary to compare different types of sensors, methods used and the results obtained in order to determine which of them are most suitable for the future development of seating furniture for work.Posljedice dugotrajnog sjedenja na uredskim i drugim radnim stolicama u posljednje se vrijeme pokušavaju ublažiti ili spriječiti primjenom suvremenih tehnologija. U različite dijelove uredskih stolica ugrađuju se pametne tehnologije i senzori, što omogućuje praćenje rasporeda sjedenja i izbjegavanje položaja koji potencijalno ugrožavaju zdravlje korisnika. Cilj ovog rada jest davanje pregleda dosadašnjih istraživanja u području primjene suvremenih pametnih tehnologija i senzora ugrađenih u uredske i ostale vrste stolica radi prevencije obolijevanja korisnika. Analizirani su članci objavljeni u razdoblju od 2010. do 2020. i indeksirani su u bazama podataka WoS CC, Scopus i IEEE Xplore, a izdvojeni su prema ključnim riječima pametna stolica i senzorska stolica. Obrađeno je 15 članaka u kojima su se istraživanja temeljila na primjeni različitih vrsta senzora koji određuju kontaktne tlakove između korisnikova tijela i dijelova stolice te raspoznaju različite položaje tijela pri sjedenju, čime se mogu prevenirati negativne posljedice za zdravlje. U analiziranim istraživanjima autori su dokazali da primjena pametne tehnologije i bolje razumijevanje sjedenja uporabom različitih senzora i aplikacija kojima se očitava pritisak tijela i određuje njegov trenutačni položaj može preventivno djelovati zahvaljujući praćenju rada srca i broja otkucaja u minuti, aktivnosti pojedinih mišićnih skupina, pravilnog disanja, procjene razine kisika u krvi i sl. U budućim istraživanjima potrebno je usporediti različite tipove senzora, primijenjene metode i dobivene rezultate kako bi se uočilo koji su od njih najprikladniji za budući razvoj radnog namještaja za sjedenje

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 159

    Get PDF
    This bibliography lists 257 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1976

    Physiological-based Driver Monitoring Systems: A Scoping Review

    Get PDF
    A physiological-based driver monitoring system (DMS) has attracted research interest and has great potential for providing more accurate and reliable monitoring of the driver’s state during a driving experience. Many driving monitoring systems are driver behavior-based or vehicle-based. When these non-physiological based DMS are coupled with physiological-based data analysis from electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and electromyography (EMG), the physical and emotional state of the driver may also be assessed. Drivers’ wellness can also be monitored, and hence, traffic collisions can be avoided. This paper highlights work that has been published in the past five years related to physiological-based DMS. Specifically, we focused on the physiological indicators applied in DMS design and development. Work utilizing key physiological indicators related to driver identification, driver alertness, driver drowsiness, driver fatigue, and drunk driver is identified and described based on the PRISMA Extension for Scoping Reviews (PRISMA-Sc) Framework. The relationship between selected papers is visualized using keyword co-occurrence. Findings were presented using a narrative review approach based on classifications of DMS. Finally, the challenges of physiological-based DMS are highlighted in the conclusion. Doi: 10.28991/CEJ-2022-08-12-020 Full Text: PD

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 171

    Get PDF
    This bibliography lists 186 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1977
    corecore