221 research outputs found

    Wavelet-Based Kernel Construction for Heart Disease Classification

    Get PDF
    © 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERINGHeart disease classification plays an important role in clinical diagnoses. The performance improvement of an Electrocardiogram classifier is therefore of great relevance, but it is a challenging task too. This paper proposes a novel classification algorithm using the kernel method. A kernel is constructed based on wavelet coefficients of heartbeat signals for a classifier with high performance. In particular, a wavelet packet decomposition algorithm is applied to heartbeat signals to obtain the Approximation and Detail coefficients, which are used to calculate the parameters of the kernel. A principal component analysis algorithm with the wavelet-based kernel is employed to choose the main features of the heartbeat signals for the input of the classifier. In addition, a neural network with three hidden layers in the classifier is utilized for classifying five types of heart disease. The electrocardiogram signals in nine patients obtained from the MIT-BIH database are used to test the proposed classifier. In order to evaluate the performance of the classifier, a multi-class confusion matrix is applied to produce the performance indexes, including the Accuracy, Recall, Precision, and F1 score. The experimental results show that the proposed method gives good results for the classification of the five mentioned types of heart disease.Peer reviewedFinal Published versio

    An intelligent multimodal biometric authentication model for personalised healthcare services

    Get PDF
    With the advent of modern technologies, the healthcare industry is moving towards a more personalised smart care model. The enablers of such care models are the Internet of Things (IoT) and Artificial Intelligence (AI). These technologies collect and analyse data from persons in care to alert relevant parties if any anomaly is detected in a patient’s regular pattern. However, such reliance on IoT devices to capture continuous data extends the attack surfaces and demands high-security measures. Both patients and devices need to be authenticated to mitigate a large number of attack vectors. The biometric authentication method has been seen as a promising technique in these scenarios. To this end, this paper proposes an AI-based multimodal biometric authentication model for single and group-based users’ device-level authentication that increases protection against the traditional single modal approach. To test the efficacy of the proposed model, a series of AI models are trained and tested using physiological biometric features such as ECG (Electrocardiogram) and PPG (Photoplethysmography) signals from five public datasets available in Physionet and Mendeley data repositories. The multimodal fusion authentication model shows promising results with 99.8% accuracy and an Equal Error Rate (EER) of 0.16

    Deep Learning Frameworks for Cardiovascular Arrhythmia Classification

    Get PDF
    Arrhythmia classification is a prominent research problem due to the computational complexities of learning the morphology of various ECG patterns and its wide prevalence in the medical field, particularly during the COVID-19 pandemic. In this article, we used Empirical Mode Decomposition and Discrete Wavelet Transform for preprocessing and then the modified signal is classified using various classifiers such as Decision Tree, Logistic Regression, Gaussian Naïve Bayes, Random Forest, Linear  SVM, Polynomial SVM, RBF SVM, Sigmoid SVM and Convolutional Neural Networks. The proposed method classify the data into five classes N (Normal), S (Supraventricular premature) beat, (V) Premature ventricular contraction, F (Fusion of ventricular and normal), and Q, (Unclassifiable Beat) using softmax regressor at the end of the network. The proposed approach performs well in terms of classification accuracy when tested using ECG signals acquired from the MIT-BIH database. In comparison to existing classifiers, the Accuracy, Precision, Recall, and F1 score values of the proposed technique are 98.5%, 96.9%, 94.3%, and 91.32%, respectively.  &nbsp

    Prediction of Cognitive States During Flight Simulation Using Multimodal Psychophysiological Sensing

    Get PDF
    The Commercial Aviation Safety Team found the majority of recent international commercial aviation accidents attributable to loss of control inflight involved flight crew loss of airplane state awareness (ASA), and distraction was involved in all of them. Research on attention-related human performance limiting states (AHPLS) such as channelized attention, diverted attention, startle/surprise, and confirmation bias, has been recommended in a Safety Enhancement (SE) entitled "Training for Attention Management." To accomplish the detection of such cognitive and psychophysiological states, a broad suite of sensors was implemented to simultaneously measure their physiological markers during a high fidelity flight simulation human subject study. Twenty-four pilot participants were asked to wear the sensors while they performed benchmark tasks and motion-based flight scenarios designed to induce AHPLS. Pattern classification was employed to predict the occurrence of AHPLS during flight simulation also designed to induce those states. Classifier training data were collected during performance of the benchmark tasks. Multimodal classification was performed, using pre-processed electroencephalography, galvanic skin response, electrocardiogram, and respiration signals as input features. A combination of one, some or all modalities were used. Extreme gradient boosting, random forest and two support vector machine classifiers were implemented. The best accuracy for each modality-classifier combination is reported. Results using a select set of features and using the full set of available features are presented. Further, results are presented for training one classifier with the combined features and for training multiple classifiers with features from each modality separately. Using the select set of features and combined training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants and was significantly higher than that for the separate training case. These results support the goal of demonstrating simultaneous real-time classification of multiple states using multiple sensing modalities in high fidelity flight simulators. This detection is intended to support and inform training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    Blood pressure estimation with complexity features from electrocardiogram and photoplethysmogram signals

    Get PDF
    A novel method for the continual, cuff-less estimation of the systolic blood pressure (SBP) and diastolic blood pressure (DBP) values based on signal complexity analysis of the photoplethysmogram (PPG) and the electrocardiogram (ECG) is reported. The proposed framework estimates the blood pressure (BP) values obtained from signals generated from 14 volunteers subjected to a series of exercise routines. Herein, the physiological signals were first pre-processed, followed by the extraction of complexity features from both the PPG and ECG. Subsequently the complexity features were used in regression models (artificial neural network (ANN), support vector machine (SVM) and LASSO) to predict the BP. The performance of the approach was evaluated by calculating the mean absolute error and the standard deviation of the predicted results and compared with the recommendations made by the British Hypertension Society (BHS) and Association for the Advancement of Medical Instrumentation. Complexity features from the ECG and PPG were investigated independently, along with the combined dataset. It was observed that the complexity features obtained from the combination of ECG and PPG signals resulted to an improved estimation accuracy for the BP. The most accurate DBP result of 5.15 ± 6.46 mmHg was obtained from ANN model, and SVM generated the most accurate prediction for the SBP which was estimated as 7.33 ± 9.53 mmHg. Results for DBP fall within recommended performance of the BHS but SBP is outside the range. Although initial results are promising, further improvements are required before the potential of this approach is fully realised

    A Physiological Signal Processing System for Optimal Engagement and Attention Detection.

    Get PDF
    In today’s high paced, hi-tech and high stress environment, with extended work hours, long to-do lists and neglected personal health, sleep deprivation has become common in modern culture. Coupled with these factors is the inherent repetitious and tedious nature of certain occupations and daily routines, which all add up to an undesirable fluctuation in individuals’ cognitive attention and capacity. Given certain critical professions, a momentary or prolonged lapse in attention level can be catastrophic and sometimes deadly. This research proposes to develop a real-time monitoring system which uses fundamental physiological signals such as the Electrocardiograph (ECG), to analyze and predict the presence or lack of cognitive attention in individuals during task execution. The primary focus of this study is to identify the correlation between fluctuating level of attention and its implications on the physiological parameters of the body. The system is designed using only those physiological signals that can be collected easily with small, wearable, portable and non-invasive monitors and thereby being able to predict well in advance, an individual’s potential loss of attention and ingression of sleepiness. Several advanced signal processing techniques have been implemented and investigated to derive multiple clandestine and informative features. These features are then applied to machine learning algorithms to produce classification models that are capable of differentiating between the cases of a person being attentive and the person not being attentive. Furthermore, Electroencephalograph (EEG) signals are also analyzed and classified for use as a benchmark for comparison with ECG analysis. For the study, ECG signals and EEG signals of volunteer subjects are acquired in a controlled experiment. The experiment is designed to inculcate and sustain cognitive attention for a period of time following which an attempt is made to reduce cognitive attention of volunteer subjects. The data acquired during the experiment is decomposed and analyzed for feature extraction and classification. The presented results show that to a fairly reasonable accuracy it is possible to detect the presence or lack of attention in individuals with just their ECG signal, especially in comparison with analysis done on EEG signals. The continual work of this research includes other physiological signals such as Galvanic Skin Response, Heat Flux, Skin Temperature and video based facial feature analysis

    Heartbeat Classification in Wearables Using Multi-layer Perceptron and Time-Frequency Joint Distribution of ECG

    Full text link
    Heartbeat classification using electrocardiogram (ECG) data is a vital assistive technology for wearable health solutions. We propose heartbeat feature classification based on a novel sparse representation using time-frequency joint distribution of ECG. Fundamental to this is a multi-layer perceptron, which incorporates these signatures to detect cardiac arrhythmia. This approach is validated with ECG data from MIT-BIH arrhythmia database. Results show that our approach has an average 95.7% accuracy, an improvement of 22% over state-of-the-art approaches. Additionally, ECG sparse distributed representations generates only 3.7% false negatives, reduction of 89% with respect to existing ECG signal classification techniques.Comment: 6 pages, 7 figures, published in IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE
    corecore