88 research outputs found

    Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

    Full text link
    The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart's rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients' acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11\%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.Comment: 14 pages, 5 figures, accepted for future publication in Remote Sensing MDPI Journa

    A new method using deep transfer learning on ECG to predict the response to cardiac resynchronization therapy

    Full text link
    Background: Cardiac resynchronization therapy (CRT) has emerged as an effective treatment for heart failure patients with electrical dyssynchrony. However, accurately predicting which patients will respond to CRT remains a challenge. This study explores the application of deep transfer learning techniques to train a predictive model for CRT response. Methods: In this study, the short-time Fourier transform (STFT) technique was employed to transform ECG signals into two-dimensional images. A transfer learning approach was then applied on the MIT-BIT ECG database to pre-train a convolutional neural network (CNN) model. The model was fine-tuned to extract relevant features from the ECG images, and then tested on our dataset of CRT patients to predict their response. Results: Seventy-one CRT patients were enrolled in this study. The transfer learning model achieved an accuracy of 72% in distinguishing responders from non-responders in the local dataset. Furthermore, the model showed good sensitivity (0.78) and specificity (0.79) in identifying CRT responders. The performance of our model outperformed clinic guidelines and traditional machine learning approaches. Conclusion: The utilization of ECG images as input and leveraging the power of transfer learning allows for improved accuracy in identifying CRT responders. This approach offers potential for enhancing patient selection and improving outcomes of CRT

    Detection of multi-class arrhythmia using heuristic and deep neural network on edge device

    Get PDF
    Heart disease is a heart condition that sometimes causes a person to die suddenly. One indication is a rhythm disorder known as arrhythmia. Multi-class Arrhythmia Detection has followed: QRS complex detection procedure and arrhythmia classification based on the QRS complex morphology. We proposed an edge device that detects QRS complexes based on variance analysis (QVAT) and the arrhythmia classification based on the QRS complex spectrogram. The classifier uses two-dimensional convolutional neural network (2D CNN) deep learning. We use a single board computer and neural network compute stick to implement the edge device. The outcomes are a prototype device cardiologists use as a supporting tool for analysing ECG signals, and patients can also use it for self-tests to figure out their heart health. To evaluate the performance of our edge device, we tested using the MIT-BIH database because other methods also use the data. The QVAT sensitivity and predictive positive are 99.81% and 99.90%, respectively. Our classifier's accuracy, sensitivity, predictive positive, specificity, and F1-score are 99.82%, 99.55%, 99.55%, 99.89%, and 99.55%, respectively. The experiment result of arrhythmia classification shows that our method outperforms the others. Still, for r-peak detection, the QVAT implemented in an edge device is comparable to the other methods. In future work, we can improve the performance of r-peak detection using the double-check algorithm in QVAT and cross-check the QRS complex detection by adding 1 class to the classifier, namely the non-QRS class

    Short-time fourier transform based ensemble classifiers for detection of atrial fibrillation from ECG datasets

    Get PDF
    Atrial Fibrillation (Afib) is a common cardiac arrhythmia characterized by irregular and often rapid heart rate, leading to inefficient blood pumping from the atria. It increases the risk of stroke, heart failure, and other heart-related complications. Afib is often associated with symptoms like palpitations, shortness of breath, and fatigue. Diagnosis typically involves electrocardiography (ECG) to detect irregular electrical activity in the heart. Treatment options range from medication to procedures like catheter ablation, aimed at restoring normal heart rhythm and reducing associated risks. Soft computing methods can aid in automating the classification of cardiovascular diseases, assisting clinicians in diagnosing arrhythmias. In this research paper, ensemble classifiers are employed for the classification of Atrial Fibrillation based on ECG datasets. When utilizing the Catboost Classifier in conjunction with the STFT-based GEO implementation, the results indicate an average perfect classification rate of approximately 99%, an error rate of 1%, and a kappa coefficient of 0.9689% for detection of Afib
    corecore