818 research outputs found

    Platforms and Protocols for the Internet of Things

    Get PDF
    Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features and requirements, and analyze the most common approaches proposed in the literature for each block. In particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST, MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will prove the importance of adopting an integrated approach that jointly addresses several issues and is able to flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which illustrates the design challenges and the choices to make when selecting which protocols and technologies to use

    Media Usage in Post-Secondary Education and Implications for Teaching and Learning

    Full text link
    The Web 2.0 has permeated academic life. The use of online information services in post-secondary education has led to dramatic changes in faculty teaching methods as well as in the learning and study behavior of students. At the same time, traditional information media, such as textbooks and printed handouts, still form the basic pillars of teaching and learning. This paper reports the results of a survey about media usage in teaching and learning conducted with Western University students and instructors, highlighting trends in the usage of new and traditional media in higher education by instructors and students. In addition, the survey comprises part of an international research program in which 20 universities from 10 countries are currently participating. Further, the study will hopefully become a part of the ongoing discussion of practices and policies that purport to advance the effective use of media in teaching and learning

    Deterministic scheduling for energy efficient and reliable communication in heterogeneous sensing environments in industrial wireless sensor networks

    Get PDF
    The present-day industries incorporate many applications, and complex processes, hence, a large number of sensors with dissimilar process deadlines and sensor update frequencies will be in place. This paper presents a scheduling algorithm, which takes into account the varying deadlines of the sensors connected to the cluster-head, and formulates a static schedule for Time Division Multiple Access (TDMA) based communication. The scheme uses IEEE802.15.4e superframe as a baseline and proposes a new superframe structure. For evaluation purposes the update frequencies of different industrial processes are considered. The scheduling algorithm is evaluated under varying network loads by increasing the number of nodes affiliated to a cluster-head. The static schedule generated by the scheduling algorithm offers reduced energy consumption, improved reliability, efficient network load management and improved information to control bits ratio

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    A cooperation-based approach to energy optimization in wireless ad hoc networks

    Get PDF
    A well known and still open issue for wireless ad hoc networks is the unfair energy consumption among the nodes. The specific position of certain nodes composing an ad hoc network makes them more involved in network operations than others, causing a faster drain of their energy. To better distribute the energy level and increase the lifetime of the whole network, we propose to periodically force the cooperation of less cooperative nodes while overwhelmed ones deliberately stop their service. A dedicated ad hoc network routing protocol is introduced to discover alternative paths without degradation in the overall network performance

    Multi-Service Group Key Management for High Speed Wireless Mobile Multicast Networks

    Get PDF
    YesRecently there is a high demand from the Internet Service Providers to transmit multimedia services over high speed wireless networks. These networks are characterized by high mobility receivers which perform frequent handoffs across homogenous and heterogeneous access networks while maintaining seamless connectivity to the multimedia services. In order to ensure secure delivery of multimedia services to legitimate group members, the conventional cluster based group key management (GKM) schemes for securing group communication over wireless mobile multicast networks have been proposed. However, they lack efficiency in rekeying the group key in the presence of high mobility users which concurrently subscribe to multiple multicast services that co-exist in the same network. This paper proposes an efficient multi-service group key management scheme (SMGKM) suitable for high mobility users which perform frequent handoffs while participating seamlessly in multiple multicast services. The users are expected to drop subscriptions after multiple cluster visits hence inducing huge key management overhead due to rekeying the previously visited cluster keys. The already proposed multi-service SMGKM system with completely decentralised authentication and key management functions is adopted to meet the demands for high mobility environment with the same level of security. Through comparisons with existing GKM schemes and simulations, SMGKM shows resource economy in terms of reduced communication and less storage overheads in a high speed environment with multiple visits

    Software-Defined Approach for Communication in Autonomous Transportation Systems

    Get PDF
    Autonomous driving technology offers a promising solution to reduce road accidents, traffic congestion, and fuel consumption. The management of vehicular networks is challenging as it demands mobility, location awareness, high reliability and low latency of data traffic. In this paper, we propose a novel communication architecture for vehicular network with 5G Mobile Networks and SDN technologies to support multiple core networks for autonomous vehicles and to tackle the potential challenges raised by the autonomous driving vehicles. Data requirements are evaluated for vehicular networks with respect to number of lanes and cluster size, to efficiently use the frequency and bandwidth. Also, the network latency requirements are analysed, which are mandatory constraints for all the applications where real time end-to-end communication is necessary. A test environment is also formulated to evaluate improvement in vehicular network using SDN-based approach over traditional core networks

    Performance Evaluation of Spatial Modulation and QOSTBC for MIMO Systems

    Get PDF
    YesMultiple-input multiple-output (MIMO) systems require simplified architectures that can maximize design parameters without sacrificing system performance. Such architectures may be used in a transmitter or a receiver. The most recent example with possible low cost architecture in the transmitter is spatial modulation (SM). In this study, we evaluate the SM and quasi-orthogonal space time block codes (QOSTBC) schemes for MIMO systems over a Rayleigh fading channel. QOSTBC enables STBC to be used in a four antenna design, for example. Standard QO-STBC techniques are limited in performance due to self-interference terms; here a QOSTBC scheme that eliminates these terms in its decoding matrix is explored. In addition, while most QOSTBC studies mainly explore performance improvements with different code structures, here we have implemented receiver diversity using maximal ratio combining (MRC). Results show that QOSTBC delivers better performance, at spectral efficiency comparable with SM

    Pre-phase Improvement For Distributed Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    • …
    corecore