47,603 research outputs found

    Incremental Recompilation of Knowledge

    Full text link
    Approximating a general formula from above and below by Horn formulas (its Horn envelope and Horn core, respectively) was proposed by Selman and Kautz (1991, 1996) as a form of ``knowledge compilation,'' supporting rapid approximate reasoning; on the negative side, this scheme is static in that it supports no updates, and has certain complexity drawbacks pointed out by Kavvadias, Papadimitriou and Sideri (1993). On the other hand, the many frameworks and schemes proposed in the literature for theory update and revision are plagued by serious complexity-theoretic impediments, even in the Horn case, as was pointed out by Eiter and Gottlob (1992), and is further demonstrated in the present paper. More fundamentally, these schemes are not inductive, in that they may lose in a single update any positive properties of the represented sets of formulas (small size, Horn structure, etc.). In this paper we propose a new scheme, incremental recompilation, which combines Horn approximation and model-based updates; this scheme is inductive and very efficient, free of the problems facing its constituents. A set of formulas is represented by an upper and lower Horn approximation. To update, we replace the upper Horn formula by the Horn envelope of its minimum-change update, and similarly the lower one by the Horn core of its update; the key fact which enables this scheme is that Horn envelopes and cores are easy to compute when the underlying formula is the result of a minimum-change update of a Horn formula by a clause. We conjecture that efficient algorithms are possible for more complex updates.Comment: See http://www.jair.org/ for any accompanying file

    Convex computation of the region of attraction of polynomial control systems

    Get PDF
    We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description

    Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

    Full text link
    We complete the complexity classification by degree of minimizing a polynomial over the integer points in a polyhedron in R2\mathbb{R}^2. Previous work shows that optimizing a quadratic polynomial over the integer points in a polyhedral region in R2\mathbb{R}^2 can be done in polynomial time, while optimizing a quartic polynomial in the same type of region is NP-hard. We close the gap by showing that this problem can be solved in polynomial time for cubic polynomials. Furthermore, we show that the problem of minimizing a homogeneous polynomial of any fixed degree over the integer points in a bounded polyhedron in R2\mathbb{R}^2 is solvable in polynomial time. We show that this holds for polynomials that can be translated into homogeneous polynomials, even when the translation vector is unknown. We demonstrate that such problems in the unbounded case can have smallest optimal solutions of exponential size in the size of the input, thus requiring a compact representation of solutions for a general polynomial time algorithm for the unbounded case

    Levelable Sets and the Algebraic Structure of Parameterizations

    Get PDF
    Asking which sets are fixed-parameter tractable for a given parameterization constitutes much of the current research in parameterized complexity theory. This approach faces some of the core difficulties in complexity theory. By focussing instead on the parameterizations that make a given set fixed-parameter tractable, we circumvent these difficulties. We isolate parameterizations as independent measures of complexity and study their underlying algebraic structure. Thus we are able to compare parameterizations, which establishes a hierarchy of complexity that is much stronger than that present in typical parameterized algorithms races. Among other results, we find that no practically fixed-parameter tractable sets have optimal parameterizations
    • 

    corecore