385 research outputs found

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    The Design and Linearization of 60GHz Injection Locked Power Amplifier

    Get PDF
    The RF power amplifier is one of the most critical blocks of transceivers, as it is expected to provide a suitable output power with high gain, efficiency and linearity. In this paper, a 60-GHz power amplifier based on an injection locked structure is demonstrated in a standard 65 CMOS technology. The PA core consists of a cross-coupled pair of NMOS transistors with an NMOS current source. This structure can achieve large output power and high PAE, but with poor linearity performance. In order to improve the linearity, several linearization techniques are investigated, including adaptive biasing and predistortion. The results show that the adaptive biasing technique can enlarge the linear operation region, but results in poor AM-PM performance. By instead using the predistortion technique, the AM-PM performance can be improved, but the linear region only extends slightly. Considering theses two techniques different advantages, we combine them together to improve not only the linear region but also the AM-PM performance. Finally, a common source amplifier is added as the first stage. With proper bias, the linear operation region is then effectively extended by 7.3 dB. This two stage power amplifier achieves large output power, high linearity and high PAE simultaneously. It delivers a gain of 20dB, a Psat of 16.3dBm, a P1dB of 15.41dBm, and a PAE of 30%.Since the invention of radio-frequency (RF) wireless communication more than 100 years ago, mobile phones and other wireless communications products for civilian consumption have developed rapidly. Nowadays, the demand for larger high data rate and capacities is rising sharply. The traditional wireless bandwidth is no longer able to meet some high-rate applications requirement. However, 60GHz wireless communication system is our solution, and up to 7 GHz unlicensed wide band around 60GHz is open to use across much of the world. Furthermore, the power amplifier (PA) is a critical part of any transmitter to convert the signal to higher power and drive the antenna. For power amplifiers, efficiency and linearity are most important. Power amplifiers with low efficiency will result in high level of heat dissipation. Linearity is a measure of the signal distortion, which consists of gain compression (AM-AM distortion) and phase distortion (AM-PM distortion). In this thesis work, an injection locked power amplifier is used to reduce the input driving requirements and improve the efficiency. Simulations have been performed for implementation in 65nm standard CMOS, which is a low-cost technology for fabrication of integrated circuits (chips). The injection locked technique means that a self-oscillating circuit is forced to run at the same frequency as the input signal. Furthermore, an integrated balun is added to transfer between single-ended and differential signals. The results show that this PA can achieve high efficiency but with poor linearity performance. In order to improve the linearity, different linearization techniques are investigated, including adaptive biasing and predistortion. Adaptive biasing is a feedback technique. At high output levels, the power amplifier has less gain, which leads to signal distortion. The adaptive biasing unit can sense the output power in real time and adjust the bias. The bias is then increased at increased output power in order to restore the power gain at high output levels. Predistortion is another linearization technique. A predistorter, which has a gain expansion characteristic, is then introduced before the PA to compensate for its gain reduction. Then, considering the advantages of these two linearization techniques, we combine them together to achieve even better results. Finally, a two-stage power amplifier is proposed by adding a common source amplifier as the first stage. The first stage can also produce a gain boost at the high output levels, and this expansion gain can be made to match the second-stage gain reduction very well. The simulation results show that the amplifier can achieve high linearity and efficiency at the same time

    Design, Fault Modeling and Testing Of a Fully Integrated Low Noise Amplifier (LNA) in 45 nm CMOS Technology for Inter and Intra-Chip Wireless Interconnects

    Get PDF
    Research in recent years has demonstrated that intra and inter-chip wireless interconnects are capable of establishing energy-efficient data communications within as well as between multiple chips. This thesis introduces a circuit level design of a source degenerated two stage common source low noise amplifier suitable for such wireless interconnects in 45-nm CMOS process. The design consists of a simple two-stage common source structure based Low Noise Amplifier (LNA) to boost the degraded received signal. Operating at 60GHz, the proposed low noise amplifier consumes only 4.88 mW active power from a 1V supply while providing 17.2 dB of maximum gain at 60 GHz operating frequency at very low noise figure of 2.8 dB, which translates to a figure of merit of 16.1 GHz and IIP3 as -14.38 dBm

    Frequency Multipliers in SiGe BiCMOS for Local Oscillator Generation in D-band Wireless Transceivers

    Get PDF
    Communications at millimeter-wave (mm-Wave) have drawn a lot of attention in recent years due to the wide available bandwidth which translates directly to higher data transmission capacity. Generation of the transceivers local oscillation (LO) is critical because many contrasting requirements, i.e. tuning range (TR), phase noise (PN), output power, and level of spurious tones, affect the system performance. Differently from what is commonly pursued at Radio Frequency, LO generation with a PLL embedding a VCO at the desired output frequency is not viable at mm-wave. A more promising approach consists of a PLL in the 10-20GHz range, where silicon VCOs feature the best figure of merit, followed by a frequency multiplier. In this thesis, a frequency multiplication chain is investigated to up-convert an LO signal from X-band to D-band by a multiplication factor of 12. The multiplication is done in steps of 3, 2, and 2. A sextupler chip comprises the tripler and the first doubler and the last doubler stage which upconverts the LO signal from E- to D-band is realized in a separate chip, all in a 55nm SiGe BiCMOS technology. The frequency tripler circuit is based on a novel circuit topology which yields a remarkable improvement on the suppression of the driving signal frequency at the output, compared to conventional designs exploiting transistors in class-C. The active core of the circuit approximates the transfer characteristic of a third-order polynomial that ideally produces only a third-harmonic of the input signal. Implemented in a separate break-out chip and consuming 23mW of DC power, the tripler demonstrates ~40dB suppression of the input signal and its 5th harmonic over 16% fractional bandwidth and robustness to power variation of the driving signal over a 15dB range. Including the E-band doubler, the sextupler chip achieves a peak output power of 1.7dBm at 74.4GHz and remains within 2dB variation from 70GHz to 82GHz, corresponding to 16% fractional BW. In this frequency range, the leakages of all harmonics are suppressed by more than 40dBc. The design of the D-band doubler was aimed at delivering high output power with high efficiency and high conversion gain. Toward this end, the efficiency of a push-push pair was improved by a stacked Colpitts oscillator to boost the power conversion gain by 10dB. Moreover, the common-collector configuration keeps separate the oscillator tank from the load, allowing independent optimization of the harmonic conversion efficiency and the load impedance for maximum power delivery. The measured performance of the test chip demonstrated Pout up to 8dBm at 130GHz with 13dB conversion gain and 6.3% Power Added Efficiency

    Receiver Front-Ends in CMOS with Ultra-Low Power Consumption

    Get PDF
    Historically, research on radio communication has focused on improving range and data rate. In the last decade, however, there has been an increasing demand for low power and low cost radios that can provide connectivity with small devices around us. They should be able to offer basic connectivity with a power consumption low enough to function extended periods of time on a single battery charge, or even energy scavenged from the surroundings. This work is focused on the design of ultra-low power receiver front-ends intended for a receiver operating in the 2.4GHz ISM band, having an active power consumption of 1mW and chip area of 1mm². Low power consumption and small size make it hard to achieve good sensitivity and tolerance to interference. This thesis starts with an introduction to the overall receiver specifications, low power radio and radio standards, front-end and LO generation architectures and building blocks, followed by the four included papers. Paper I demonstrates an inductorless front-end operating at 915MHz, including a frequency divider for quadrature LO generation. An LO generator operating at 2.4GHz is shown in Paper II, enabling a front-end operating above 2GHz. Papers III and IV contain circuits with combined front-end and LO generator operating at or above the full 2.45GHz target frequency. They use VCO and frequency divider topologies that offer efficient operation and low quadrature error. An efficient passive-mixer design with improved suppression of interference, enables an LNA-less design in Paper IV capable of operating without a SAW-filter

    Design and Simulation of Two Stage Wideband CMOS Amplifier in 90 NM Technology

    Get PDF
    Design and simulation of 7 GHz CMOS wideband amplifier(CMOSWA) using a modified cascode circuit realized in  90-nm CMOS technology is presented here. The proposed system consists of two stages, namely a modified folded cascode and an inductively degenerated common source amplifier. The circuit is experimented with and without a feedback network. This work discusses the performance variation as a function of reactive components, and the initial stage results in 22 dB gain,2.6 GHz bandwidth, and 40GHz unity gain-bandwidth. The circuit without the feedback network exhibits 30.7dB gain,4.8GHz bandwidth(BW), and 10GHz unity-gain bandwidth(UGB). The reactive feedback network's inclusion helped to achieve 38.7 dB gain, 6.95GHz BW, 30GHz UGB, and 55o phase margin. The circuit consumes 1.4mW power from a 1.8V power supply. Simulation results of the proposed circuit are comparable and better than the reported wideband designs in the literature. Realization of our proposed circuit would add value to the area of wideband amplifier design

    High-accuracy switched-capacitor techniques applied to filter and ADC design

    Get PDF
    • …
    corecore