2,825 research outputs found

    Disambiguating ventral striatum fMRI-related bold signal during reward prediction in schizophrenia

    Get PDF
    Reward detection, surprise detection and prediction-error signaling have all been proposed as roles for the ventral striatum (vStr). Previous neuroimaging studies of striatal function in schizophrenia have found attenuated neural responses to reward-related prediction errors; however, as prediction errors represent a discrepancy in mesolimbic neural activity between expected and actual events, it is critical to examine responses to both expected and unexpected rewards (URs) in conjunction with expected and UR omissions in order to clarify the nature of ventral striatal dysfunction in schizophrenia. In the present study, healthy adults and people with schizophrenia were tested with a reward-related prediction-error task during functional magnetic resonance imaging to determine whether schizophrenia is associated with altered neural responses in the vStr to rewards, surprise prediction errors or all three factors. In healthy adults, we found neural responses in the vStr were correlated more specifically with prediction errors than to surprising events or reward stimuli alone. People with schizophrenia did not display the normal differential activation between expected and URs, which was partially due to exaggerated ventral striatal responses to expected rewards (right vStr) but also included blunted responses to unexpected outcomes (left vStr). This finding shows that neural responses, which typically are elicited by surprise, can also occur to well-predicted events in schizophrenia and identifies aberrant activity in the vStr as a key node of dysfunction in the neural circuitry used to differentiate expected and unexpected feedback in schizophrenia

    The motivation and pleasure dimension of negative symptoms: neural substrates and behavioral outputs.

    Get PDF
    A range of emotional and motivation impairments have long been clinically documented in people with schizophrenia, and there has been a resurgence of interest in understanding the psychological and neural mechanisms of the so-called "negative symptoms" in schizophrenia, given their lack of treatment responsiveness and their role in constraining function and life satisfaction in this illness. Negative symptoms comprise two domains, with the first covering diminished motivation and pleasure across a range of life domains and the second covering diminished verbal and non-verbal expression and communicative output. In this review, we focus on four aspects of the motivation/pleasure domain, providing a brief review of the behavioral and neural underpinnings of this domain. First, we cover liking or in-the-moment pleasure: immediate responses to pleasurable stimuli. Second, we cover anticipatory pleasure or wanting, which involves prediction of a forthcoming enjoyable outcome (reward) and feeling pleasure in anticipation of that outcome. Third, we address motivation, which comprises effort computation, which involves figuring out how much effort is needed to achieve a desired outcome, planning, and behavioral response. Finally, we cover the maintenance emotional states and behavioral responses. Throughout, we consider the behavioral manifestations and brain representations of these four aspects of motivation/pleasure deficits in schizophrenia. We conclude with directions for future research as well as implications for treatment

    Neural Circuitry of Novelty Salience Processing in Psychosis Risk: Association With Clinical Outcome

    Get PDF
    Psychosis has been proposed to develop from dysfunction in a hippocampal-striatal-midbrain circuit, leading to aberrant salience processing. Here, we used functional magnetic resonance imaging (fMRI) during novelty salience processing to investigate this model in people at clinical high risk (CHR) for psychosis according to their subsequent clinical outcomes. Seventy-six CHR participants as defined using the Comprehensive Assessment of At-Risk Mental States (CAARMS) and 31 healthy controls (HC) were studied while performing a novelty salience fMRI task that engaged an a priori hippocampal-striatal-midbrain circuit of interest. The CHR sample was then followed clinically for a mean of 59.7 months (~5 y), when clinical outcomes were assessed in terms of transition (CHR-T) or non-transition (CHR-NT) to psychosis (CAARMS criteria): during this period, 13 individuals (17%) developed a psychotic disorder (CHR-T) and 63 did not. Functional activation and effective connectivity within a hippocampal-striatal-midbrain circuit were compared between groups. In CHR individuals compared to HC, hippocampal response to novel stimuli was significantly attenuated (P = .041 family-wise error corrected). Dynamic Causal Modelling revealed that stimulus novelty modulated effective connectivity from the hippocampus to the striatum, and from the midbrain to the hippocampus, significantly more in CHR participants than in HC. Conversely, stimulus novelty modulated connectivity from the midbrain to the striatum significantly less in CHR participants than in HC, and less in CHR participants who subsequently developed psychosis than in CHR individuals who did not become psychotic. Our findings are consistent with preclinical evidence implicating hippocampal-striatal-midbrain circuit dysfunction in altered salience processing and the onset of psychosis

    What causes aberrant salience in schizophrenia? A role for impaired short-term habituation and the GRIA1 (GluA1) AMPA receptor subunit.

    Get PDF
    The GRIA1 locus, encoding the GluA1 (also known as GluRA or GluR1) AMPA glutamate receptor subunit, shows genome-wide association to schizophrenia. As well as extending the evidence that glutamatergic abnormalities have a key role in the disorder, this finding draws attention to the behavioural phenotype of Gria1 knockout mice. These mice show deficits in short-term habituation. Importantly, under some conditions the attention being paid to a recently presented neutral stimulus can actually increase rather than decrease (sensitization). We propose that this mouse phenotype represents a cause of aberrant salience and, in turn, that aberrant salience (and the resulting positive symptoms) in schizophrenia may arise, at least in part, from a glutamatergic genetic predisposition and a deficit in short-term habituation. This proposal links an established risk gene with a psychological process central to psychosis and is supported by findings of comparable deficits in short-term habituation in mice lacking the NMDAR receptor subunit Grin2a (which also shows association to schizophrenia). As aberrant salience is primarily a dopaminergic phenomenon, the model supports the view that the dopaminergic abnormalities can be downstream of a glutamatergic aetiology. Finally, we suggest that, as illustrated here, the real value of genetically modified mice is not as ‘models of schizophrenia’ but as experimental tools that can link genomic discoveries with psychological processes and help elucidate the underlying neural mechanisms

    Is avolition in schizophrenia associated with a deficit of dorsal caudate activity? A functional magnetic resonance imaging study during reward anticipation and feedback

    Get PDF
    BACKGROUND: The neurobiological underpinnings of avolition in schizophrenia remain unclear. Most brain imaging research has focused on reward prediction deficit and on ventral striatum dysfunction, but findings are not consistent. In the light of accumulating evidence that both ventral striatum and dorsal caudate play a key role in motivation, we investigated ventral striatum and dorsal caudate activation during processing of reward or loss in patients with schizophrenia. METHOD: We used functional magnetic resonance imaging to study brain activation during a Monetary Incentive Delay task in patients with schizophrenia, treated with second-generation antipsychotics only, and in healthy controls (HC). We also assessed the relationships of ventral striatum and dorsal caudate activation with measures of hedonic experience and motivation. RESULTS: The whole patient group had lower motivation but comparable hedonic experience and striatal activation than HC. Patients with high avolition scores showed lower dorsal caudate activation than both HC and patients with low avolition scores. A lower dorsal caudate activation was also observed in patients with deficit schizophrenia compared to HC and patients with non-deficit schizophrenia. Dorsal caudate activity during reward anticipation was significantly associated with avolition, but not with anhedonia in the patient group. CONCLUSIONS: These findings suggest that avolition in schizophrenia is linked to dorsal caudate hypoactivation

    Striatal dopamine and reward prediction error signaling in unmedicated schizophrenia patients

    Get PDF
    Increased striatal dopamine synthesis capacity has consistently been reported in patients with schizophrenia. However, the mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error signaling during reinforcement learning. In this study, we investigated striatal dopamine synthesis capacity, reward prediction errors, and their association in unmedicated schizophrenia patients (n = 19) and healthy controls (n = 23). They took part in FDOPA-PET and underwent functional magnetic resonance imaging (fMRI) scanning, where they performed a reversal-learning paradigm. The groups were compared regarding dopamine synthesis capacity (Kicer), fMRI neural prediction error signals, and the correlation of both. Patients did not differ from controls with respect to striatal Kicer. Taking into account, comorbid alcohol abuse revealed that patients without such abuse showed elevated Kicer in the associative striatum, while those with abuse did not differ from controls. Comparing all patients to controls, patients performed worse during reversal learning and displayed reduced prediction error signaling in the ventral striatum. In controls, Kicer in the limbic striatum correlated with higher reward prediction error signaling, while there was no significant association in patients. Kicer in the associative striatum correlated with higher positive symptoms and blunted reward prediction error signaling was associated with negative symptoms. Our results suggest a dissociation between striatal subregions and symptom domains, with elevated dopamine synthesis capacity in the associative striatum contributing to positive symptoms while blunted prediction error signaling in the ventral striatum related to negative symptoms

    Active inference, evidence accumulation, and the urn task

    Get PDF
    Deciding how much evidence to accumulate before making a decision is a problem we and other animals often face, but one that is not completely understood. This issue is particularly important because a tendency to sample less information (often known as reflection impulsivity) is a feature in several psychopathologies, such as psychosis. A formal understanding of information sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical letter, we consider evidence accumulation in terms of active (Bayesian) inference using a generic model of Markov decision processes. Here, agents are equipped with beliefs about their own behavior--in this case, that they will make informed decisions. Normative decision making is then modeled using variational Bayes to minimize surprise about choice outcomes. Under this scheme, different facets of belief updating map naturally onto the functional anatomy of the brain (at least at a heuristic level). Of particular interest is the key role played by the expected precision of beliefs about control, which we have previously suggested may be encoded by dopaminergic neurons in the midbrain. We show that manipulating expected precision strongly affects how much information an agent characteristically samples, and thus provides a possible link between impulsivity and dopaminergic dysfunction. Our study therefore represents a step toward understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference and may cast light on why this process is disordered in psychopathology

    Abnormal Frontostriatal Activity During Unexpected Reward Receipt in Depression and Schizophrenia: Relationship to Anhedonia.

    Get PDF
    Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states.Supported by a MRC Clinician Scientist award (G0701911), a Brain and Behaviour Research Foundation Young Investigator, and an Isaac Newton Trust award to Dr Murray; an award to Dr Segarra from the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the European Union; by the University of Cambridge Behavioural and Clinical Neuroscience Institute, funded by a joint award from the Medical Research Council and Wellcome Trust (G1000183 and 093875/Z/10Z respectively); by awards from the Wellcome Trust (095692) and the Bernard Wolfe Health Neuroscience Fund to Professor Fletcher, and by awards from the Wellcome Trust Institutional Strategic Support Fund (097814/Z/11) and Cambridge NIHR Biomedical Research Centre. The authors are grateful for the help of clinical staff in CAMEO, in the Cambridge Rehabilitation and Recovery service and Pathways, and in the Cambridge IAPT service, for help with participant recruitment.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/npp.2015.37

    Deep brain stimulation in schizophrenia

    Get PDF
    Deep brain stimulation (DBS) has successfully advanced treatment options of putative therapy-resistant neuropsychiatric diseases. Building on this strong foundation more and more mental disorders in the stadium of therapy-resistance are considered as possible indications for DBS. Especially schizophrenia with its associated severe and difficult to treat symptoms is gaining attention. This attention demands critical questions regarding the assumed mechanisms of DBS and its possible influence on the supposed pathophysiology of schizophrenia. Here we synoptically compare current approaches and theories of DBS and discuss the feasibility of DBS in schizophrenia as well as the transferability from other psychiatric disorders successfully treated with DBS. For this we consider recent advances in animal models of schizophrenic symptoms, results regarding the influence of DBS on dopaminergic transmission as well as data concerning neural oscillation and synchronization. In conclusion the use of DBS for some symptoms of schizophrenia seems to be a promising approach, but the lack of a comprehensive theory of the mechanisms of DBS as well as its impact on schizophrenia might void the use of DBS in schizophrenia at this point
    • …
    corecore