65 research outputs found

    Dynkin Game of Stochastic Differential Equations with Random Coefficients, and Associated Backward Stochastic Partial Differential Variational Inequality

    Full text link
    A Dynkin game is considered for stochastic differential equations with random coefficients. We first apply Qiu and Tang's maximum principle for backward stochastic partial differential equations to generalize Krylov estimate for the distribution of a Markov process to that of a non-Markov process, and establish a generalized It\^o-Kunita-Wentzell's formula allowing the test function to be a random field of It\^o's type which takes values in a suitable Sobolev space. We then prove the verification theorem that the Nash equilibrium point and the value of the Dynkin game are characterized by the strong solution of the associated Hamilton-Jacobi-Bellman-Isaacs equation, which is currently a backward stochastic partial differential variational inequality (BSPDVI, for short) with two obstacles. We obtain the existence and uniqueness result and a comparison theorem for strong solution of the BSPDVI. Moreover, we study the monotonicity on the strong solution of the BSPDVI by the comparison theorem for BSPDVI and define the free boundaries. Finally, we identify the counterparts for an optimal stopping time problem as a special Dynkin game.Comment: 40 page

    Dynkin Game of Convertible Bonds and Their Optimal Strategy

    Get PDF
    This paper studies the valuation and optimal strategy of convertible bonds as a Dynkin game by using the reflected backward stochastic differential equation method and the variational inequality method. We first reduce such a Dynkin game to an optimal stopping time problem with state constraint, and then in a Markovian setting, we investigate the optimal strategy by analyzing the properties of the corresponding free boundary, including its position, asymptotics, monotonicity and regularity. We identify situations when call precedes conversion, and vice versa. Moreover, we show that the irregular payoff results in the possibly non-monotonic conversion boundary. Surprisingly, the price of the convertible bond is not necessarily monotonic in time: it may even increase when time approaches maturity.Comment: 28 pages, 9 figures in Journal of Mathematical Analysis and Application, 201

    Stochastic differential games involving impulse controls and double-obstacle quasi-variational inequalities

    Full text link
    We study a two-player zero-sum stochastic differential game with both players adopting impulse controls, on a finite time horizon. The Hamilton-Jacobi-Bellman-Isaacs (HJBI) partial differential equation of the game turns out to be a double-obstacle quasi-variational inequality, therefore the two obstacles are implicitly given. We prove that the upper and lower value functions coincide, indeed we show, by means of the dynamic programming principle for the stochastic differential game, that they are the unique viscosity solution to the HJBI equation, therefore proving that the game admits a value

    Optimal stopping problems in mathematical finance

    Get PDF
    This thesis is concerned with the pricing of American-type contingent claims. First, the explicit solutions to the perpetual American compound option pricing problems in the Black-Merton-Scholes model for financial markets are presented. Compound options are financial contracts which give their holders the right (but not the obligation) to buy or sell some other options at certain times in the future by the strike prices given. The method of proof is based on the reduction of the initial two-step optimal stopping problems for the underlying geometric Brownian motion to appropriate sequences of ordinary one-step problems. The latter are solved through their associated one-sided free-boundary problems and the subsequent martingale verification for ordinary differential operators. The closed form solution to the perpetual American chooser option pricing problem is also obtained, by means of the analysis of the equivalent two-sided free-boundary problem. Second, an extension of the Black-Merton-Scholes model with piecewise-constant dividend and volatility rates is considered. The optimal stopping problems related to the pricing of the perpetual American standard put and call options are solved in closed form. The method of proof is based on the reduction of the initial optimal stopping problems to the associated free-boundary problems and the subsequent martingale verification using a local time-space formula. As a result, the explicit algorithms determining the constant hitting thresholds for the underlying asset price process, which provide the optimal exercise boundaries for the options, are presented. Third, the optimal stopping games associated with perpetual convertible bonds in an extension of the Black-Merton-Scholes model with random dividends under different information flows are studied. In this type of contracts, the writers have a right to withdraw the bonds before the holders can exercise them, by converting the bonds into assets. The value functions and the stopping boundaries' expressions are derived in closed-form in the case of observable dividend rate policy, which is modelled by a continuous-time Markov chain. The analysis of the associated parabolic-type free-boundary problem, in the case of unobservable dividend rate policy, is also presented and the optimal exercise times are proved to be the first times at which the asset price process hits boundaries depending on the running state of the filtering dividend rate estimate. Moreover, the explicit estimates for the value function and the optimal exercise boundaries, in the case in which the dividend rate is observable by the writers but unobservable by the holders of the bonds, are presented. Finally, the optimal stopping problems related to the pricing of perpetual American options in an extension of the Black-Merton-Scholes model, in which the dividend and volatility rates of the underlying risky asset depend on the running values of its maximum and its maximum drawdown, are studied. The latter process represents the difference between the running maximum and the current asset value. The optimal stopping times for exercising are shown to be the first times, at which the price of the underlying asset exits some regions restricted by certain boundaries depending on the running values of the associated maximum and maximum drawdown processes. The closed-form solutions to the equivalent free-boundary problems for the value functions are obtained with smooth fit at the optimal stopping boundaries and normal reflection at the edges of the state space of the resulting three-dimensional Markov process. The optimal exercise boundaries of the perpetual American call, put and strangle options are obtained as solutions of arithmetic equations and first-order nonlinear ordinary differential equations

    Weak Solution for a Class of Fully Nonlinear Stochastic Hamilton-Jacobi-Bellman Equations

    Full text link
    This paper is concerned with the stochastic Hamilton-Jacobi-Bellman equation with controlled leading coefficients, which is a type of fully nonlinear backward stochastic partial differential equation (BSPDE for short). In order to formulate the weak solution for such kind of BSPDEs, the classical potential theory is generalized in the backward stochastic framework. The existence and uniqueness of the weak solution is proved, and for the partially non-Markovian case, we obtain the associated gradient estimate. As a byproduct, the existence and uniqueness of solution for a class of degenerate reflected BSPDEs is discussed as well.Comment: 29 page

    Controlled diffusion processes

    Full text link
    This article gives an overview of the developments in controlled diffusion processes, emphasizing key results regarding existence of optimal controls and their characterization via dynamic programming for a variety of cost criteria and structural assumptions. Stochastic maximum principle and control under partial observations (equivalently, control of nonlinear filters) are also discussed. Several other related topics are briefly sketched.Comment: Published at http://dx.doi.org/10.1214/154957805100000131 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The obstacle problem for semilinear parabolic partial integro-differential equations

    Full text link
    This paper presents a probabilistic interpretation for the weak Sobolev solution of the obstacle problem for semilinear parabolic partial integro-differential equations (PIDEs). The results of Leandre (1985) concerning the homeomorphic property for the solution of SDEs with jumps are used to construct random test functions for the variational equation for such PIDEs. This results in the natural connection with the associated Reflected Backward Stochastic Differential Equations with jumps (RBSDEs), namely Feynman Kac's formula for the solution of the PIDEs. Moreover it gives an application to the pricing and hedging of contingent claims with constraints in the wealth or portfolio processes in financial markets including jumps.Comment: 31 page
    • …
    corecore