1,924 research outputs found

    The Center symmetry and its spontaneous breakdown at high temperatures

    Get PDF
    We examine the role of the center Z(N) of the gauge group SU(N) in gauge theories. In this pedagogical article, we discuss, among other topics, the center symmetry and confinement and deconfinement in gauge theories and associated finite-temperature phase transitions. We also look at universal properties of domain walls separating distinct confined and deconfined bulk phases, including a description of how QCD color-flux strings can end on color-neutral domain walls, and unusual finite-volume dependence in which quarks in deconfined bulk phase seem to be "confined".Comment: LaTex, 35 pages, 6 figures, uses sprocl.sty. To be published in the Festschrift in honor of B.L. Ioffe, "At the Frontier of Particle Physics/ Handbook of QCD", edited by M. Shifma

    The Thermodynamics of Quarks and Gluons

    Full text link
    This is an introduction to the study of strongly interacting matter. We survey its different possible states and discuss the transition from hadronic matter to a plasma of deconfined quarks and gluons. Following this, we summarize the results provided by lattice QCD finite temperature and density, and then investigate the nature of the deconfinement transition. Finally we give a schematic overview of possible ways to study the properties of the quark-gluon plasma.Comment: 19 pages, 21 figures; lecture given at the QGP Winter School, Jaipur/India, Feb.1-3, 2008; to appear in Springer Lecture Notes in Physic

    Confinement and the center of the gauge group

    Full text link
    The question of the role of the center of the gauge group in the phenomenon of confinement in Yang-Mills theory is addressed. The investigation is performed from the most general perspective of considering all possible choices for the gauge symmetry group. In this context, an interesting role is played by G(2) Yang-Mills theory: the simplest pure gauge theory with a trivial center and without 't Hooft flux vortices. Numerical simulations show the presence of a first order finite temperature deconfinement phase transition in G(2) Yang-Mills theory in (3+1) dimensions. Interestingly, the G(2) gauge symmetry can be broken to an SU(3) subgroup by the Higgs mechanism. We investigate the relation between the deconfinement phase transition in G(2) and SU(3) Yang-Mills theories by numerical simulations in the G(2) gauge-Higgs system.Comment: Plenary talk at 23rd International Symposium on Lattice Field Theory: Lattice 2005, Trinity College, Dublin, Ireland, 25-30 Jul 200

    An effective chiral Hadron-Quark Equation of State

    Full text link
    We construct an effective model for the QCD equation of state, taking into account chiral symmetry restoration as well as the deconfinement phase transition. The correct asymptotic degrees of freedom at the high and low temperature limits are included (quarks ↔\leftrightarrow hadrons). The model shows a rapid crossover for both order parameters, as is expected from lattice calculations. We then compare the thermodynamic properties of the model at μB=0\mu_B=0 which turn out to be in qualitative agreement with lattice data, while apparent quantitative differences can be attributed to hadronic contributions and excluded volume corrections. Furthermore we discuss the effects of a repulsive vector type quark interaction at finite baryon number densities on the resulting phase diagram of the model. Our current model is able to reproduce a first-order liquid gas phase transition as expected, but does not show any signs of a first order deconfinement or chiral phase transition. Both transitions rather appear as a very wide crossover in which heavily medium modified hadron coexist with free quarks.Comment: 19 pages, 13 figures Version accepted by J. Phys.

    Colour deconfinement in hot and dense matter

    Get PDF
    We first introduce the conceptual basis of critical behaviour in strongly interacting matter, with colour deconfinement as QCD analog of the insulator-conductor transition and chiral symmetry restoration as special case of the associated shift in the mass of the constituents. Next we summarize quark-gluon plasma formation in finite temperature lattice QCD. We consider the underlying symmetries and their spontaneous breaking/restoration in the transition, as well as the resulting changes in thermodynamic behaviour. Finally, we turn to the experimental study of strongly interacting matter by high energy nuclear collisions, using charmonium production to probe the confinement status of the produced primordial medium. Recent results from Pb-Pb collisions at CERN may provide first evidence for colour deconfinement.Comment: 11 pages tex, uses macro-hs.tex, 10 figures; talk given at CRIS '96, First Catania Relativistic Ion Studies, Acicastello, Italy, May 27 - 31, 1996; to appear in the Proceeding

    Strangeness Production in Nuclear Matter and Expansion Dynamics

    Full text link
    Thermodynamical properties of hot and dense nuclear matter are analyzed and compared for different equation of state (EoS). It is argued that the softest point of the equation of state and the strangeness separation on the phase boundary can manifest themselves in observables. The influence of the EoS and the order of the phase transition on the expansion dynamics of nuclear matter and strangeness excitation function is analyzed. It is shown that bulk properties of strangeness production in A-A collisions depend only weakly on the particular form of the EoS. The predictions of different models are related with experimental data on strangeness production.Comment: 38 page
    • …
    corecore