5,436 research outputs found

    The state-of-the-art in personalized recommender systems for social networking

    Get PDF
    With the explosion of Web 2.0 application such as blogs, social and professional networks, and various other types of social media, the rich online information and various new sources of knowledge flood users and hence pose a great challenge in terms of information overload. It is critical to use intelligent agent software systems to assist users in finding the right information from an abundance of Web data. Recommender systems can help users deal with information overload problem efficiently by suggesting items (e.g., information and products) that match users’ personal interests. The recommender technology has been successfully employed in many applications such as recommending films, music, books, etc. The purpose of this report is to give an overview of existing technologies for building personalized recommender systems in social networking environment, to propose a research direction for addressing user profiling and cold start problems by exploiting user-generated content newly available in Web 2.0

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Algorithms Aside: Recommendation as the Lens of Life

    Get PDF
    In this position paper, we take the experimental approach of putting algorithms aside, and reflect on what recommenders would be for people if they were not tied to technology. By looking at some of the shortcomings that current recommenders have fallen into and discussing their limitations from a human point of view, we ask the question: if freed from all limitations, what should, and what could, RecSys be? We then turn to the idea that life itself is the best recommender system, and that people themselves are the query. By looking at how life brings people in contact with options that suit their needs or match their preferences, we hope to shed further light on what current RecSys could be doing better. Finally, we look at the forms that RecSys could take in the future. By formulating our vision beyond the reach of usual considerations and current limitations, including business models, algorithms, data sets, and evaluation methodologies, we attempt to arrive at fresh conclusions that may inspire the next steps taken by the community of researchers working on RecSys

    Trust dynamics for collaborative global computing

    Get PDF
    Recent advances in networking technology have increased the potential for dynamic enterprise collaborations between an open set of entities on a global scale. The security of these collaborations is a major concern, and requires novel approaches suited to this new environment to be developed. Trust management appears to be a promising approach. Due to the dynamic nature of these collaborations,dynamism in the formation, evolution and exploitation of trust is essential. In this paper we explore the properties of trust dynamics in this context. Trust is formed and evolves according to personal experience and recommendations. The properties of trust dynamics are expressed through a formal model of trust. Specific examples, based on an e-purse application scenario are used to demonstrate these properties

    Finding the right answer: an information retrieval approach supporting knowledge sharing

    Get PDF
    Knowledge Management can be defined as the effective strategies to get the right piece of knowledge to the right person in the right time. Having the main purpose of providing users with information items of their interest, recommender systems seem to be quite valuable for organizational knowledge management environments. Here we present KARe (Knowledgeable Agent for Recommendations), a multiagent recommender system that supports users sharing knowledge in a peer-to-peer environment. Central to this work is the assumption that social interaction is essential for the creation and dissemination of new knowledge. Supporting social interaction, KARe allows users to share knowledge through questions and answers. This paper describes KARe�s agent-oriented architecture and presents its recommendation algorithm

    Information Filtering on Coupled Social Networks

    Full text link
    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm based on the coupled social networks, which considers the effects of both social influence and personalized preference. Experimental results on two real datasets, \emph{Epinions} and \emph{Friendfeed}, show that hybrid pattern can not only provide more accurate recommendations, but also can enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding structure and function of coupled social networks
    corecore