2,064 research outputs found

    Shared content addressing protocol (SCAP): optimizing multimedia content distribution at the transport layer

    Get PDF
    In recent years, the networking community has put a significant research effort in identifying new ways to distribute content to multiple users in a better-than-unicast manner. Scalable delivery is more important now video is the dominant traffic type and further growth is expected. To make content distribution scalable, in-network optimization functions are needed such as caches. The established transport layer protocols are end-to-end and do not allow optimizing transport below the application layer, hence the popularity of overlay application layer solutions located in the network. In this paper, we introduce a novel transport protocol, the Shared Content Addressing Protocol (SCAP) that allows in-network intermediate elements to participate in optimizing the delivery process, using only the transport layer. SCAP runs on top of standard IP networks, and SCAP optimization functions can be plugged-in the network transparently as needed. As such, only transport protocol based intermediate functions need to be deployed in the network, and the applications can stay at the topological end points. We define and evaluate a prototype version of the SCAP protocol using both simulation and a prototype implementation of a transparent SCAP-only intermediate optimization function

    The 5G Cellular Backhaul Management Dilemma: To Cache or to Serve

    Full text link
    With the introduction of caching capabilities into small cell networks (SCNs), new backaul management mechanisms need to be developed to prevent the predicted files that are downloaded by the at the small base stations (SBSs) to be cached from jeopardizing the urgent requests that need to be served via the backhaul. Moreover, these mechanisms must account for the heterogeneity of the backhaul that will be encompassing both wireless backhaul links at various frequency bands and a wired backhaul component. In this paper, the heterogeneous backhaul management problem is formulated as a minority game in which each SBS has to define the number of predicted files to download, without affecting the required transmission rate of the current requests. For the formulated game, it is shown that a unique fair proper mixed Nash equilibrium (PMNE) exists. Self-organizing reinforcement learning algorithm is proposed and proved to converge to a unique Boltzmann-Gibbs equilibrium which approximates the desired PMNE. Simulation results show that the performance of the proposed approach can be close to that of the ideal optimal algorithm while it outperforms a centralized greedy approach in terms of the amount of data that is cached without jeopardizing the quality-of-service of current requests.Comment: Accepted for publication at Transactions on Wireless Communication

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years
    • …
    corecore