4,920 research outputs found

    Dynamics of a Rolling Disk in the Presence of Dry Friction

    Get PDF
    In this paper we are interested in the dynamics and numerical treatment of a rolling disk on a flat support. The objective of the paper is to develop a numerical model which is able to simulate the dynamics of a rolling disk taking into account various kinds a friction models (resistance against sliding, pivoting and rolling). A mechanical model of a rolling disk is presented in the framework of Non-smooth Dynamics and Convex Analysis. In an analytical study, approximations are derived for the energy decay of the system during the final stage of the motion for various kinds of frictional dissipation models. Finally, the numerical and analytical results are discussed and compared with experimental results available in literatur

    Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts

    Get PDF
    Friction management has been carried out extensively in the majority of railway networks in the last few years. A popular practice is the application of friction modifiers to increase the adhesion level in contaminated wheel-rail contacts. Two friction modifiers have particularly been used or tested on several railway networks as adhesion enhancers to facilitate the traction and braking operation under poor adhesion conditions. However, for assessment of the performance the railway operators and infrastructure managers mostly rely on practical observations that do not elucidate completely the effectiveness and side effects of these adhesion enhancers. In this paper, the constituents of the two friction modifiers are identified and the solid components are analyzed. A twin-disk roller rig has been used to study their performance in dry and wet contacts under closely controlled laboratory conditions. The adhesion characteristics of both friction modifiers are examined for different slip ratios. Furthermore, the wheel and rail disks are examined after a series of dry tests to analyze the mass loss, the surface damage, the change in surface hardness and roughness, and the subsurface deformation caused by the friction modifiers compared to dry clean contacts. (C) 2009 Elsevier B.V. All rights reserved

    Dynamics of solid dispersions in oil during the lubrication of point contacts. Part 1: Graphite

    Get PDF
    A Hertzian contact was lubricated with dispersed graphite in mineral oils under boundary lubrication conditions. The contact was optically observed under pure rolling, combined rolling and sliding, and pure sliding conditions. The contact was formed with a steel ball on the flat surface of a glass disk. Photomicrographs are presented which show the distribution of the graphite in and around the contact. Friction and surface damage are also shown for conditions when the base oils are used alone and when graphite is added to the base oils. Under pure rolling and combined rolling and sliding conditions, it is found that, for low speeds, a graphite film can form which will separate the contacting surfaces. Under pure sliding conditions, graphite accumulates at the inlet and sweeps around the contact, but very little of the graphite passes through the contact. The accumulated graphite appears to act as a barrier which reduces the supply of oil available to the contact for boundary lubrication. Friction data show no clear short term beneficial or detrimental effect caused by addition of graphite to the base oil. However, during pure sliding, more abrasion occurs on the polished balls lubricated with the dispersion than on those lubricated with the base oil alone. All observations were for the special case of a highly-polished ball on a glass surface and may not be applicable to other geometries and materials, or to rougher surfaces

    Dynamics of solid dispersions in oil during the lubrication of point of contacts. Part 2: Molybdenum disulfide

    Get PDF
    A Hertzian contact consisting of a steel ball in contact with a glass disk is lubricated with MoS2 dispersions and observed by optical microscopy at various slide/roll conditions. In general the behavior of MoS2 and graphite are similar. That is, the solids tend to enter the contact and form a film on the contacting surfaces whenever a rolling component of motion is used, but solid particles seldom enter the contact during pure sliding. The MoS2 has more pronounced plastic flow behavior than graphite. However, the polished steel ball is more readily scratched by MoS2 than by graphite. Under the conditions of these studies, lower friction and wear are observed with pure oil rather than with the dispersions. However under other conditions (such as different contact geometry or rougher surfaces) the solid lubricant dispersions might be beneficial

    Collapsing granular suspensions

    Full text link
    A 2D contact dynamics model is proposed as a microscopic description of a collapsing suspension/soil to capture the essential physical processes underlying the dynamics of generation and collapse of the system. Our physical model is compared with real data obtained from in situ measurements performed with a natural collapsing/suspension soil. We show that the shear strength behavior of our collapsing suspension/soil model is very similar to the behavior of this collapsing suspension soil, for both the unperturbed and the perturbed phases of the material.Comment: 7 pages, 5 figures, accepted for publication in EPJ

    Steady Motion of a Rigid Disk of Finite Thickness on a Horizontal Plane

    Full text link
    The article discusses the steady motion of a rigid disk of finite thickness rolling on its edge on a horizontal plane under the influence of gravity. The governing equations are presented and two cases allowing for a steady state solution are considered: rolling on consistently rough ground and rolling on perfectly smooth ground. The conditions of steady motion are derived for both kinds of ground and it is shown that the possible steady motion of a disk is either on a straight line in a circle. Also oscillations about steady state are discussed and conditions for stable motion are established.Comment: 28 pages, 7 figure

    Force chains and contact network topology in packings of elongated particles

    Full text link
    By means of contact dynamic simulations, we investigate the contact network topology and force chains in two-dimensional packings of elongated particles modeled by rounded-cap rectangles. The morphology of large packings of elongated particles in quasistatic equilibrium is complex due to the combined effects of local nematic ordering of the particles and orientations of contacts between particles. We show that particle elongation affects force distributions and force/fabric anisotropy via various local structures allowed by steric exclusions and the requirement of force balance. As a result, the force distributions become increasingly broader as particles become more elongated. Interestingly, the weak force network transforms from a passive stabilizing agent with respect to strong force chains to an active force-transmitting network for the whole system. The strongest force chains are carried by side/side contacts oriented along the principal stress direction.Comment: Soumis a Physical Review

    The effect of contact torques on porosity of cohesive powders

    Full text link
    The porosity of uniaxially compacted cohesive powders depends on the applied stress (including gravity). The case, where these stresses are weak, is considered. The compaction results in a porosity which is a function of sliding, rolling and torsion friction. By contact dynamics simulations it is shown that the influences of contact torques (static rolling and torsion friction) on the porosity are significant and approximately additive. The relevance for nano-powder pressure sintering is discussed.Comment: 5 pages, 5 figure
    corecore