9,156 research outputs found

    Sequential Desynchronization in Networks of Spiking Neurons with Partial Reset

    Full text link
    The response of a neuron to synaptic input strongly depends on whether or not it has just emitted a spike. We propose a neuron model that after spike emission exhibits a partial response to residual input charges and study its collective network dynamics analytically. We uncover a novel desynchronization mechanism that causes a sequential desynchronization transition: In globally coupled neurons an increase in the strength of the partial response induces a sequence of bifurcations from states with large clusters of synchronously firing neurons, through states with smaller clusters to completely asynchronous spiking. We briefly discuss key consequences of this mechanism for more general networks of biophysical neurons

    Synchronization of electrically coupled resonate-and-fire neurons

    Full text link
    Electrical coupling between neurons is broadly present across brain areas and is typically assumed to synchronize network activity. However, intrinsic properties of the coupled cells can complicate this simple picture. Many cell types with strong electrical coupling have been shown to exhibit resonant properties, and the subthreshold fluctuations arising from resonance are transmitted through electrical synapses in addition to action potentials. Using the theory of weakly coupled oscillators, we explore the effect of both subthreshold and spike-mediated coupling on synchrony in small networks of electrically coupled resonate-and-fire neurons, a hybrid neuron model with linear subthreshold dynamics and discrete post-spike reset. We calculate the phase response curve using an extension of the adjoint method that accounts for the discontinuity in the dynamics. We find that both spikes and resonant subthreshold fluctuations can jointly promote synchronization. The subthreshold contribution is strongest when the voltage exhibits a significant post-spike elevation in voltage, or plateau. Additionally, we show that the geometry of trajectories approaching the spiking threshold causes a "reset-induced shear" effect that can oppose synchrony in the presence of network asymmetry, despite having no effect on the phase-locking of symmetrically coupled pairs

    Resonate and Fire Neuron with Fixed Magnetic Skyrmions

    Full text link
    In the brain, the membrane potential of many neurons oscillates in a subthreshold damped fashion and fire when excited by an input frequency that nearly equals their eigen frequency. In this work, we investigate theoretically the artificial implementation of such "resonate-and-fire" neurons by utilizing the magnetization dynamics of a fixed magnetic skyrmion in the free layer of a magnetic tunnel junction (MTJ). To realize firing of this nanomagnetic implementation of an artificial neuron, we propose to employ voltage control of magnetic anisotropy or voltage generated strain as an input (spike or sinusoidal) signal, which modulates the perpendicular magnetic anisotropy (PMA). This results in continual expansion and shrinking (i.e. breathing) of a skyrmion core that mimics the subthreshold oscillation. Any subsequent input pulse having an interval close to the breathing period or a sinusoidal input close to the eigen frequency drives the magnetization dynamics of the fixed skyrmion in a resonant manner. The time varying electrical resistance of the MTJ layer due to this resonant oscillation of the skyrmion core is used to drive a Complementary Metal Oxide Semiconductor (CMOS) buffer circuit, which produces spike outputs. By rigorous micromagnetic simulation, we investigate the interspike timing dependence and response to different excitatory and inhibitory incoming input pulses. Finally, we show that such resonate and fire neurons have potential application in coupled nanomagnetic oscillator based associative memory arrays

    Soma-Axon Coupling Configurations That Enhance Neuronal Coincidence Detection

    Get PDF
    Coincidence detector neurons transmit timing information by responding preferentially to concurrent synaptic inputs. Principal cells of the medial superior olive (MSO) in the mammalian auditory brainstem are superb coincidence detectors. They encode sound source location with high temporal precision, distinguishing submillisecond timing differences among inputs. We investigate computationally how dynamic coupling between the input region (soma and dendrite) and the spike-generating output region (axon and axon initial segment) can enhance coincidence detection in MSO neurons. To do this, we formulate a two-compartment neuron model and characterize extensively coincidence detection sensitivity throughout a parameter space of coupling configurations. We focus on the interaction between coupling configuration and two currents that provide dynamic, voltage-gated, negative feedback in subthreshold voltage range: sodium current with rapid inactivation and low-threshold potassium current, IKLT. These currents reduce synaptic summation and can prevent spike generation unless inputs arrive with near simultaneity. We show that strong soma-to-axon coupling promotes the negative feedback effects of sodium inactivation and is, therefore, advantageous for coincidence detection. Furthermore, the feedforward combination of strong soma-to-axon coupling and weak axon-to-soma coupling enables spikes to be generated efficiently (few sodium channels needed) and with rapid recovery that enhances high-frequency coincidence detection. These observations detail the functional benefit of the strongly feedforward configuration that has been observed in physiological studies of MSO neurons. We find that IKLT further enhances coincidence detection sensitivity, but with effects that depend on coupling configuration. For instance, in models with weak soma-to-axon and weak axon-to-soma coupling, IKLT in the axon enhances coincidence detection more effectively than IKLT in the soma. By using a minimal model of soma-to-axon coupling, we connect structure, dynamics, and computation. Although we consider the particular case of MSO coincidence detectors, our method for creating and exploring a parameter space of two-compartment models can be applied to other neurons

    Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Get PDF
    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsi- cally generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynami- cal regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations, for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons

    Controlling the spontaneous spiking regularity via channel blocking on Newman-Watts networks of Hodgkin-Huxley neurons

    Full text link
    We investigate the regularity of spontaneous spiking activity on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise and fraction of blocked voltage-gated sodium and potassium ion channels embedded in neuronal membranes. We show that there exists an optimal fraction of shortcut links between physically distant neurons, as well as an optimal intensity of intrinsic noise, which warrant an optimally ordered spontaneous spiking activity. This doubly coherence resonance-like phenomenon depends significantly, and can be controlled via the fraction of closed sodium and potassium ion channels, whereby the impacts can be understood via the analysis of the firing rate function as well as the deterministic system dynamics. Potential biological implications of our findings for information propagation across neural networks are also discussed.Comment: 6 two-column pages, 5 figures; accepted for publication in Europhysics Letter
    corecore