4,705 research outputs found

    Complexity and integrability in 4D bi-rational maps with two invariants

    Full text link
    In this letter we give fourth-order autonomous recurrence relations with two invariants, whose degree growth is cubic or exponential. These examples contradict the common belief that maps with sufficiently many invariants can have at most quadratic growth. Cubic growth may reflect the existence of non-elliptic fibrations of invariants, whereas we conjecture that the exponentially growing cases lack the necessary conditions for the applicability of the discrete Liouville theorem.Comment: 16 pages, 2 figure

    Baxterization, dynamical systems, and the symmetries of integrability

    Full text link
    We resolve the `baxterization' problem with the help of the automorphism group of the Yang-Baxter (resp. star-triangle, tetrahedron, \dots) equations. This infinite group of symmetries is realized as a non-linear (birational) Coxeter group acting on matrices, and exists as such, {\em beyond the narrow context of strict integrability}. It yields among other things an unexpected elliptic parametrization of the non-integrable sixteen-vertex model. It provides us with a class of discrete dynamical systems, and we address some related problems, such as characterizing the complexity of iterations.Comment: 25 pages, Latex file (epsf style). WARNING: Postscript figures are BIG (600kB compressed, 4.3MB uncompressed). If necessary request hardcopy to [email protected] and give your postal mail addres

    Global and local Complexity in weakly chaotic dynamical systems

    Full text link
    In a topological dynamical system the complexity of an orbit is a measure of the amount of information (algorithmic information content) that is necessary to describe the orbit. This indicator is invariant up to topological conjugation. We consider this indicator of local complexity of the dynamics and provide different examples of its behavior, showing how it can be useful to characterize various kind of weakly chaotic dynamics. We also provide criteria to find systems with non trivial orbit complexity (systems where the description of the whole orbit requires an infinite amount of information). We consider also a global indicator of the complexity of the system. This global indicator generalizes the topological entropy, taking into account systems were the number of essentially different orbits increases less than exponentially. Then we prove that if the system is constructive (roughly speaking: if the map can be defined up to any given accuracy using a finite amount of information) the orbit complexity is everywhere less or equal than the generalized topological entropy. Conversely there are compact non constructive examples where the inequality is reversed, suggesting that this notion comes out naturally in this kind of complexity questions.Comment: 23 page

    Integrable cluster dynamics of directed networks and pentagram maps

    Full text link
    The pentagram map was introduced by R. Schwartz more than 20 years ago. In 2009, V. Ovsienko, R. Schwartz and S. Tabachnikov established Liouville complete integrability of this discrete dynamical system. In 2011, M. Glick interpreted the pentagram map as a sequence of cluster transformations associated with a special quiver. Using compatible Poisson structures in cluster algebras and Poisson geometry of directed networks on surfaces, we generalize Glick's construction to include the pentagram map into a family of discrete integrable maps and we give these maps geometric interpretations. This paper expands on our research announcement arXiv:1110.0472Comment: 46 pages, 22 figure
    • …
    corecore