37 research outputs found

    Unstable and stable regimes of polariton condensation

    Full text link
    Modulational instabilities play a key role in a wide range of nonlinear optical phenomena, leading e.g. to the formation of spatial and temporal solitons, rogue waves and chaotic dynamics. Here we experimentally demonstrate the existence of a modulational instability in condensates of cavity polaritons, arising from the strong coupling of cavity photons with quantum well excitons. For this purpose we investigate the spatiotemporal coherence properties of polariton condensates in GaAs-based microcavities under continuous-wave pumping. The chaotic behavior of the instability results in a strongly reduced spatial and temporal coherence and a significantly inhomogeneous density. Additionally we show how the instability can be tamed by introducing a periodic potential so that condensation occurs into negative mass states, leading to largely improved coherence and homogeneity. These results pave the way to the exploration of long-range order in dissipative quantum fluids of light within a controlled platform.Comment: 7 pages, 5 figure

    Bright solitary waves and non-equilibrium dynamics in atomic Bose-Einstein condensates

    Get PDF
    In this thesis we investigate the static properties and non-equilibrium dynamics of bright solitary waves in atomic Bose-Einstein condensates in the zero-temperature limit, and we investigate the non-equilibrium dynamics of a driven atomic Bose-Einstein condensate at finite temperature. Bright solitary waves in atomic Bose-Einstein condensates are non-dispersive and soliton-like matter-waves which could be used in future atom-interferometry experiments. Using the mean-field, Gross-Pitaevskii description, we propose an experimental scheme to generate pairs of bright solitary waves with controlled velocity and relative phase; this scheme could form an important part of a future atom interferometer, and we demonstrate that it can also be used to test the validity of the mean-field model of bright solitary waves. We also develop a method to quantitatively assess how soliton-like static, three-dimensional bright solitary waves are; this assessment is particularly relevant for the design of future experiments. In reality, the non-zero temperatures and highly non-equilibrium dynamics occurring in a bright solitary wave interferometer are likely to necessitate a theoretical description which explicitly accounts for the non-condensate fraction. We show that a second-order, number-conserving description offers a minimal self-consistent treatment of the relevant condensate -- non-condensate interactions at low temperatures and for moderate non-condensate fractions. We develop a method to obtain a fully-dynamical numerical solution to the integro-differential equations of motion of this description, and solve these equations for a driven, quasi-one-dimensional test system. We show that rapid non-condensate growth predicted by lower-order descriptions, and associated with linear dynamical instabilities, can be damped by the self-consistent treatment of interactions included in the second-order description

    Nonlinear Phenomena of Ultracold Atomic Gases in Optical Lattices: Emergence of Novel Features in Extended States

    Full text link
    The system of a cold atomic gas in an optical lattice is governed by two factors: nonlinearity originating from the interparticle interaction, and the periodicity of the system set by the lattice. The high level of controllability associated with such an arrangement allows for the study of the competition and interplay between these two, and gives rise to a whole range of interesting and rich nonlinear effects. This review covers the basic idea and overview of such nonlinear phenomena, especially those corresponding to extended states. This includes "swallowtail" loop structures of the energy band, Bloch states with multiple periodicity, and those in "nonlinear lattices", i.e., systems with the nonlinear interaction term itself being a periodic function in space.Comment: 39 pages, 21 figures; review article to be published in a Special Issue of Entropy on "Non-Linear Lattice

    Non-equilibrium dynamics of bulk-deterministic cellular automata

    Get PDF
    In this thesis we study simple one-dimensional nonequilibirum many-body systems, namely, reversible cellular automata (RCA). These are discrete time lattice models exhibiting emergent collective excitations---solitons---that move with fixed velocities and that interact via pairwise scattering. In particular, we study the attractively interacting Rule 201 RCA and noninteracting Rule 150 RCA which, together with the extensively studied repulsively interacting Rule 54 RCA constitute arguably the simplest one-dimensional microscopic physical models of strongly interacting and asymptotically freely propagating particles, to investigate interacting nonequilibrium many-body dynamics. After a brief literature review of the field, we present the first publication-style chapter which considers the Rule 201 RCA. Here, we study the stationary or steady state properties of systems with periodic, deterministic, and stochastic boundary conditions. We demonstrate that, despite the complexities of the model, specifically, a reducible state space and nontrivial topological vacuum, the model exhibits a simple and intuitive quasiparticle interpretation, reminiscent of the simpler Rule 54 RCA. This enables us to obtain exact expressions for the steady states in terms of a highly versatile matrix product state (MPS) representation that takes an instructive generalized Gibbs ensemble form. In the second publication-style chapter, we study the Rule 150 RCA. Due to its simplicity, originating from the noninteracting dynamics, we are able to obtain many exact results relating to its dynamics. To start, we generalize the MPS ansatz used to study the Rule 201 RCA, and find its exact steady state distribution for identical boundary conditions. We proceed to extend the MPS ansatz further and obtain a class of eigenvectors that form the dominant decay modes of the Markov propagator. Following this, we postulate a conjecture for the complete spectrum, which is in perfect agreement with numerics obtained via exact diagonalization of computationally tractable system sizes, providing access to the full relaxation dynamics. From here, we further utilise the ansatz to investigate the large deviation statistics and obtain exact expressions for its scaled cumulant generating function and rate function, which demonstrate the existence of a dynamical first order phase transition. The third and final publication-style chapter focuses on the exact dynamical large deviations statistics of the Rule 201 RCA. Specifically, we employ the methods introduced to study the large deviations of the Rule 54 RCA and show that they fail here to provide any insight into the atypical dynamical behaviour of the Rule 201 RCA. We suggest that this is due to the restrictions imposed by the local dynamical rules, which limits the support of the local observables. In spite of this, we explicitly derived an exact analytic expression for the dominant eigenvalue of the tilted Markov propagator, from which several large deviation statistics can be obtained

    Non-equilibrium dynamics of bulk-deterministic cellular automata

    Get PDF
    In this thesis we study simple one-dimensional nonequilibirum many-body systems, namely, reversible cellular automata (RCA). These are discrete time lattice models exhibiting emergent collective excitations---solitons---that move with fixed velocities and that interact via pairwise scattering. In particular, we study the attractively interacting Rule 201 RCA and noninteracting Rule 150 RCA which, together with the extensively studied repulsively interacting Rule 54 RCA constitute arguably the simplest one-dimensional microscopic physical models of strongly interacting and asymptotically freely propagating particles, to investigate interacting nonequilibrium many-body dynamics. After a brief literature review of the field, we present the first publication-style chapter which considers the Rule 201 RCA. Here, we study the stationary or steady state properties of systems with periodic, deterministic, and stochastic boundary conditions. We demonstrate that, despite the complexities of the model, specifically, a reducible state space and nontrivial topological vacuum, the model exhibits a simple and intuitive quasiparticle interpretation, reminiscent of the simpler Rule 54 RCA. This enables us to obtain exact expressions for the steady states in terms of a highly versatile matrix product state (MPS) representation that takes an instructive generalized Gibbs ensemble form. In the second publication-style chapter, we study the Rule 150 RCA. Due to its simplicity, originating from the noninteracting dynamics, we are able to obtain many exact results relating to its dynamics. To start, we generalize the MPS ansatz used to study the Rule 201 RCA, and find its exact steady state distribution for identical boundary conditions. We proceed to extend the MPS ansatz further and obtain a class of eigenvectors that form the dominant decay modes of the Markov propagator. Following this, we postulate a conjecture for the complete spectrum, which is in perfect agreement with numerics obtained via exact diagonalization of computationally tractable system sizes, providing access to the full relaxation dynamics. From here, we further utilise the ansatz to investigate the large deviation statistics and obtain exact expressions for its scaled cumulant generating function and rate function, which demonstrate the existence of a dynamical first order phase transition. The third and final publication-style chapter focuses on the exact dynamical large deviations statistics of the Rule 201 RCA. Specifically, we employ the methods introduced to study the large deviations of the Rule 54 RCA and show that they fail here to provide any insight into the atypical dynamical behaviour of the Rule 201 RCA. We suggest that this is due to the restrictions imposed by the local dynamical rules, which limits the support of the local observables. In spite of this, we explicitly derived an exact analytic expression for the dominant eigenvalue of the tilted Markov propagator, from which several large deviation statistics can be obtained

    Many-body localization, thermalization, and entanglement

    Get PDF
    Thermalizing quantum systems are conventionally described by statistical mechanics at equilibrium. However, not all systems fall into this category, with many body localization providing a generic mechanism for thermalization to fail in strongly disordered systems. Many-body localized (MBL) systems remain perfect insulators at non-zero temperature, which do not thermalize and therefore cannot be described using statistical mechanics. In this Colloquium we review recent theoretical and experimental advances in studies of MBL systems, focusing on the new perspective provided by entanglement and non-equilibrium experimental probes such as quantum quenches. Theoretically, MBL systems exhibit a new kind of robust integrability: an extensive set of quasi-local integrals of motion emerges, which provides an intuitive explanation of the breakdown of thermalization. A description based on quasi-local integrals of motion is used to predict dynamical properties of MBL systems, such as the spreading of quantum entanglement, the behavior of local observables, and the response to external dissipative processes. Furthermore, MBL systems can exhibit eigenstate transitions and quantum orders forbidden in thermodynamic equilibrium. We outline the current theoretical understanding of the quantum-to-classical transition between many-body localized and ergodic phases, and anomalous transport in the vicinity of that transition. Experimentally, synthetic quantum systems, which are well-isolated from an external thermal reservoir, provide natural platforms for realizing the MBL phase. We review recent experiments with ultracold atoms, trapped ions, superconducting qubits, and quantum materials, in which different signatures of many-body localization have been observed. We conclude by listing outstanding challenges and promising future research directions.Comment: (v2) minor changes, added one figure and expanded bibliography; (v1) colloquium-style review on many-body localization; 29 pages, 11 figures; comments are welcom

    Quantum Brownian motion in Bose-Einstein condensates

    Get PDF
    Quantum Brownian motion is one of the most prominent examples of an open quantum system, a system which cannot be treated in isolation from its environment. The simplest method to study the dynamics of a system undergoing such a type of motion, that satisfies Heisenberg Uncertainty principle is the approach of Quantum Generalized Langevin Equations (QGLE), which was used throughout this thesis. A Quantum Brownian motion approach is used in this work to study the Bose polaron problem. In this case, one transforms the original problem into one where the impurities are treated as quantum Brownian particles interacting with a bath composed of the Bogoliubov modes of the condensate. Then by deriving the relevant QGLE, it was shown that the dynamics of the Bose polaron exhibit memory effects. This was studied for both a free Bose-Einstein condensate (BEC) and a harmonically trapped one, in both cases for experimentally relevant parameters. Taking advantage of this recent theoretical development, we study a number of phenomena that can be examined under this prism and show how various microdevices can be constructed and controlled. In the first project, we study the creation of entanglement and squeezing of two uncoupled impurities that are immersed in a single common (BEC) bath. We treat these impurities as two quantum Brownian particles. We study two scenarios:(i) In the absence of an external potential, we observe sudden death of entanglement;(ii) In the presence of an external harmonic potential, where entanglement survives even at the asymptotic time limit. In our second work, we studied the diffusive behavior of a Bose Polaron immersed in a coherently coupled two-component BEC. The particle superdiffuses if it couples in the same manner to both components, i.e. if it couples either attractively or repulsively to both of them. This is the same behavior of an impurity immersed in a single BEC. Conversely, we find that it exhibits a transient nontrivial subdiffusive behavior if it couples attractively to one of the components and repulsively with the other. We show how the magnitude of the anomalous exponent reached and the duration of the subdiffusive interval can be controlled with the Rabi frequency of the coherent coupling between the two components and the coupling strength of the impurity to the BEC. Then we proceeded with the construction of two microdevices, a quantum sub-nk thermometer and a heat diode. In the first project, we introduced a novel minimally disturbing method for sub-nK thermometry in a BEC. In this case, the impurity acted as a thermometer, where one detects temperature fluctuations from measurements of the position and momentum of the impurity. Crucially, these cause minimal backaction on the BEC and hence, realize a nondemolition temperature measurement. Following the paradigm of the emerging field of quantum thermometry, we combine tools from quantum parameter estimation and the theory of open quantum systems to solve the problem in full generality. We thus avoid any simplification, such as demanding thermalization of the impurity atoms. In our final work, we investigated the heat transport and the control of heat current among two spatially separated trapped BECs, each of them at a different temperature. To allow for heat transport among the two independent BECs we consider a link made of two dipole-dipole interacting harmonically trapped impurities, each of them interacting with one of the BECs. We address the dependence of heat current and current-current correlations on the physical parameters of the system. Interestingly, we show that heat rectification, can occur in our system, when a periodic driving on the trapping frequencies of the impurities is considered. Therefore, our system is a possible setup for the implementation of a phononic circuit, and hence contributes in the general framework of using BECs as platforms for quantum information processing.El movimiento Browniano, es un ejemplo de un sistema abierto, es decir un sistema que no se puede tratar en aislamiento. El método más simple para estudiar la dinámica de dicho sistema, que cumple el principio de la incertidumbre de Heisenberg es el de Quantum Generalized Langevin Equations (QGLE), que es el método que se usa en esta tesis. La perspectiva de Quantum Brownian motion se ha usado para estudiar muchos sistemas, entre ellos el problema de Bose polaron. En este caso, uno pasa el problema original a uno donde las impurezas se tratan como partículas Brownianas quanticas interactuando con un baño compuesto de modos de Bogoliubov del condensado. Después de derivar la QGLE relevante, se puede demostrar que la dinámica del Bose polaron muestra efectos de memoria. Esto se ha estudiado tanto en un Bose Einstein Condensate (BEC) libre como en uno atrapado en un trapo harmónico, para parámetros relevantes en experimentos. Aprovechando de este reciente desarrollo, estudiamos muchos fenómenos que se pueden investigar bajo este prisma y mostramos cómo se pueden construir y controlar varios microdispositivos. En el primer proyecto, estudiamos la creación de enlazamiento y squeezing de dos impurezas no acopladas, inmersas en un único BEC baño común. Estudiamos dos senarios: (i) en la ausencia de un potencial externo, donde observamos la muerte repentina del enlazamiento (ii) en la presencia de un trapo externo harmónico, donde el enlazamiento sobrevive incluso en el límite asintótico de largos tiempos. En nuestro segundo trabajo, estudiamos el comportamiento difusivo de un Bose polaron inmerso en un BEC de dos componentes que están acopladas coherentemente. La partícula es superdffusa si se acopla en la misma manera a los dos componentes, i.e. atractivamente o repulsivamente, como en el caso de un unico BEC. En el caso contrario, encontramos que la partícula muestra un comportamiento transitorio non-trivial. Mostramos como la magnitud del exponente anómalo y la duración del periodo transitorio se pueden controlar a través de la frecuencia Rabi del acoplamiento coherente entre los dos componentes y la fuerza del acoplamiento de la impureza a los dos componentes del BEC. En seguida, procedemos con la construcción de dos microdispositivos, un termómetro quántico y un diodo térmico. En el primer proyecto, hemos introducido un nuevo método de mínimo disturbio, que sirve para termometría en temperaturas sub-nK en un BEC. Nuestra técnica está basada otra vez en el modelo de Bose polaron, donde esta vez la impureza inmersa en un BEC sirve como un termómetro. La propuesta es detectar fluctuaciones de la temperatura de las medidas de la posición y el impulso de la impureza. Crucialmente, estas causan una reacción mínima en el BEC y, por lo tanto, realizan una medida de la temperatura no demoledora. En nuestro trabajo, evitamos cualquiera simplificación, como la imposición de la termalización de la impureza, o del acoplamiento débil de la impureza con el BEC. En el último trabajo, investigamos el transporte de calor y el control de corrientes de calor entre dos BECs espacialmente separados y atrapados harmónicamente, en temperaturas distintas. El flujo de calor entre los dos BECs, esta facilitado a través de dos impurezas harmónicamente atrapadas, cada una interactuando con su propio BEC. Las impurezas estan acopladas a traves de interacciones de dipolo-dipolo. Examinamos la dependencia del corriente de calor y sus correlaciones en los parámetros físicos del sistema. Mostramos que la rectificación del corriente del calor, i.e. el flujo de calor unidireccional puede ocurrir en el sistema, cuando aplicamos una conducción periódica en las frecuencias de los trapos de las impurezas. Por lo tanto, nuestro sistema es una posible configuración para la implementación de un circuito fononico

    Quantum Brownian motion in Bose-Einstein condensates

    Get PDF
    Quantum Brownian motion is one of the most prominent examples of an open quantum system, a system which cannot be treated in isolation from its environment. The simplest method to study the dynamics of a system undergoing such a type of motion, that satisfies Heisenberg Uncertainty principle is the approach of Quantum Generalized Langevin Equations (QGLE), which was used throughout this thesis. A Quantum Brownian motion approach is used in this work to study the Bose polaron problem. In this case, one transforms the original problem into one where the impurities are treated as quantum Brownian particles interacting with a bath composed of the Bogoliubov modes of the condensate. Then by deriving the relevant QGLE, it was shown that the dynamics of the Bose polaron exhibit memory effects. This was studied for both a free Bose-Einstein condensate (BEC) and a harmonically trapped one, in both cases for experimentally relevant parameters. Taking advantage of this recent theoretical development, we study a number of phenomena that can be examined under this prism and show how various microdevices can be constructed and controlled. In the first project, we study the creation of entanglement and squeezing of two uncoupled impurities that are immersed in a single common (BEC) bath. We treat these impurities as two quantum Brownian particles. We study two scenarios:(i) In the absence of an external potential, we observe sudden death of entanglement;(ii) In the presence of an external harmonic potential, where entanglement survives even at the asymptotic time limit. In our second work, we studied the diffusive behavior of a Bose Polaron immersed in a coherently coupled two-component BEC. The particle superdiffuses if it couples in the same manner to both components, i.e. if it couples either attractively or repulsively to both of them. This is the same behavior of an impurity immersed in a single BEC. Conversely, we find that it exhibits a transient nontrivial subdiffusive behavior if it couples attractively to one of the components and repulsively with the other. We show how the magnitude of the anomalous exponent reached and the duration of the subdiffusive interval can be controlled with the Rabi frequency of the coherent coupling between the two components and the coupling strength of the impurity to the BEC. Then we proceeded with the construction of two microdevices, a quantum sub-nk thermometer and a heat diode. In the first project, we introduced a novel minimally disturbing method for sub-nK thermometry in a BEC. In this case, the impurity acted as a thermometer, where one detects temperature fluctuations from measurements of the position and momentum of the impurity. Crucially, these cause minimal backaction on the BEC and hence, realize a nondemolition temperature measurement. Following the paradigm of the emerging field of quantum thermometry, we combine tools from quantum parameter estimation and the theory of open quantum systems to solve the problem in full generality. We thus avoid any simplification, such as demanding thermalization of the impurity atoms. In our final work, we investigated the heat transport and the control of heat current among two spatially separated trapped BECs, each of them at a different temperature. To allow for heat transport among the two independent BECs we consider a link made of two dipole-dipole interacting harmonically trapped impurities, each of them interacting with one of the BECs. We address the dependence of heat current and current-current correlations on the physical parameters of the system. Interestingly, we show that heat rectification, can occur in our system, when a periodic driving on the trapping frequencies of the impurities is considered. Therefore, our system is a possible setup for the implementation of a phononic circuit, and hence contributes in the general framework of using BECs as platforms for quantum information processing.El movimiento Browniano, es un ejemplo de un sistema abierto, es decir un sistema que no se puede tratar en aislamiento. El método más simple para estudiar la dinámica de dicho sistema, que cumple el principio de la incertidumbre de Heisenberg es el de Quantum Generalized Langevin Equations (QGLE), que es el método que se usa en esta tesis. La perspectiva de Quantum Brownian motion se ha usado para estudiar muchos sistemas, entre ellos el problema de Bose polaron. En este caso, uno pasa el problema original a uno donde las impurezas se tratan como partículas Brownianas quanticas interactuando con un baño compuesto de modos de Bogoliubov del condensado. Después de derivar la QGLE relevante, se puede demostrar que la dinámica del Bose polaron muestra efectos de memoria. Esto se ha estudiado tanto en un Bose Einstein Condensate (BEC) libre como en uno atrapado en un trapo harmónico, para parámetros relevantes en experimentos. Aprovechando de este reciente desarrollo, estudiamos muchos fenómenos que se pueden investigar bajo este prisma y mostramos cómo se pueden construir y controlar varios microdispositivos. En el primer proyecto, estudiamos la creación de enlazamiento y squeezing de dos impurezas no acopladas, inmersas en un único BEC baño común. Estudiamos dos senarios: (i) en la ausencia de un potencial externo, donde observamos la muerte repentina del enlazamiento (ii) en la presencia de un trapo externo harmónico, donde el enlazamiento sobrevive incluso en el límite asintótico de largos tiempos. En nuestro segundo trabajo, estudiamos el comportamiento difusivo de un Bose polaron inmerso en un BEC de dos componentes que están acopladas coherentemente. La partícula es superdffusa si se acopla en la misma manera a los dos componentes, i.e. atractivamente o repulsivamente, como en el caso de un unico BEC. En el caso contrario, encontramos que la partícula muestra un comportamiento transitorio non-trivial. Mostramos como la magnitud del exponente anómalo y la duración del periodo transitorio se pueden controlar a través de la frecuencia Rabi del acoplamiento coherente entre los dos componentes y la fuerza del acoplamiento de la impureza a los dos componentes del BEC. En seguida, procedemos con la construcción de dos microdispositivos, un termómetro quántico y un diodo térmico. En el primer proyecto, hemos introducido un nuevo método de mínimo disturbio, que sirve para termometría en temperaturas sub-nK en un BEC. Nuestra técnica está basada otra vez en el modelo de Bose polaron, donde esta vez la impureza inmersa en un BEC sirve como un termómetro. La propuesta es detectar fluctuaciones de la temperatura de las medidas de la posición y el impulso de la impureza. Crucialmente, estas causan una reacción mínima en el BEC y, por lo tanto, realizan una medida de la temperatura no demoledora. En nuestro trabajo, evitamos cualquiera simplificación, como la imposición de la termalización de la impureza, o del acoplamiento débil de la impureza con el BEC. En el último trabajo, investigamos el transporte de calor y el control de corrientes de calor entre dos BECs espacialmente separados y atrapados harmónicamente, en temperaturas distintas. El flujo de calor entre los dos BECs, esta facilitado a través de dos impurezas harmónicamente atrapadas, cada una interactuando con su propio BEC. Las impurezas estan acopladas a traves de interacciones de dipolo-dipolo. Examinamos la dependencia del corriente de calor y sus correlaciones en los parámetros físicos del sistema. Mostramos que la rectificación del corriente del calor, i.e. el flujo de calor unidireccional puede ocurrir en el sistema, cuando aplicamos una conducción periódica en las frecuencias de los trapos de las impurezas. Por lo tanto, nuestro sistema es una posible configuración para la implementación de un circuito fononico.Postprint (published version

    Transport and Non-Equilibrium Dynamics in Optical Lattices. From Expanding Atomic Clouds to Negative Absolute Temperatures

    Get PDF
    Transport properties and nonequilibrium dynamics in strongly correlated materials are typically difficult to calculate. This holds true even for minimalistic model Hamiltonians of these systems, such as the fermionic Hubbard model. Ultracold atoms in optical lattices enable an alternative realization of the Hubbard model and have the advantage of being free of additional complications such as phonons, lattice defects or impurities. This way, cold atoms can be used as quantum simulators of strongly interacting materials. Being thermally isolated systems, however, we show that cold atoms in optical lattices can also behave very differently from solids and can show a plethora of novel dynamic effects. In this thesis, several out-of equilibrium processes involving interacting fermionic atoms in optical lattices are presented. We first analyze the expansion dynamics of an initially confined atomic cloud in the lowest band of an optical lattice. While non-interacting atoms expand ballistically, the cloud expands with a dramatically reduced velocity in the presence of interactions. Most prominently, the expansion velocity is independent of the attractive or repulsive character of the interactions, highlighting a novel dynamic symmetry of the Hubbard model. In a second project, we discuss the possibility of realizing negative absolute temperatures in optical lattices. Negative absolute temperatures characterize equilibrium states with an inverted occupation of energy levels. Here, we propose a dynamical process to realize equilibrated Fermions at negative temperatures and analyze the time scales of global relaxation to equilibrium, which are associated with a redistribution of energy and particles by slow diffusive processes. We show that energy conservation has a major impact on the dynamics of an interacting cloud in an optical lattice, which is exposed to an additional weak linear (gravitational) potential. Instead of ‘falling downwards‘, the cloud diffuses symmetrically upwards and downwards in the gravitational potential. Furthermore, we show analytically that the radius R grows with the time t according to R ∼ t^1/3, consistent with numerical simulations of the Boltzmann equation. Finally, we analyze the damping of Bloch oscillations by interactions. For a homogeneous system, we discuss the possibility of mapping the dynamics of the particle current to a classical damped harmonic oscillator equation, thereby giving an analytic explanation for the transition from weakly damped to over-damped Bloch oscillations. We show that the dynamics of a strongly Bloch oscillating and weakly interacting atomic cloud can be discribed in terms of a novel effective “stroboscopic” diffusion equation. In this approximation, the cloud’s radius R grows asymptotically in time t according to R ∼ t^1/5
    corecore