112,267 research outputs found

    Nimbus 6 Random Access Measurement System applications experiments

    Get PDF
    The advantages of a technique in which data collection platforms randomly transmit signal to a polar orbiting satellite, thus eliminating satellite interrogation are demonstrated in investigations of the atmosphere; oceanographic parameters; Arctic regions and ice conditions; navigation and position location; and data buoy development

    Neural markers of performance states in an Olympic athlete: An EEG case study in air-pistol shooting

    Get PDF
    This study focused on identifying the neural markers underlying optimal and suboptimal performance experiences of an elite air-pistol shooter, based on the tenets of the multi-action plan (MAP) model. According to the MAP model’s assumptions, skilled athletes’ cortical patterns are expected to differ among optimal/automatic (Type 1), optimal/controlled (Type 2), suboptimal/controlled (Type 3), and suboptimal/automatic (Type 4) performance experiences. We collected performance (target pistol shots), cognitive-affective (perceived control, accuracy, and hedonic tone), and cortical activity data (32-channel EEG) of an elite shooter. Idiosyncratic descriptive analyses revealed differences in perceived accuracy in regard to optimal and suboptimal performance states. Event-Related Desynchronization/Synchronization analysis supported the notion that optimal-automatic performance experiences (Type 1) were characterized by a global synchronization of cortical arousal associated with the shooting task, whereas suboptimal controlled states (Type 3) were underpinned by high cortical activity levels in the attentional brain network. Results are addressed in the light of the neural efficiency hypothesis and reinvestment theory. Perceptual training recommendations aimed at restoring optimal performance levels are discussed

    Postfledging Survival, Movements, and Dispersal of Ring Ouzels (Turdus torquatus)

    Get PDF
    We thank Invercauld Estate for cooperation with access to Glen Clunie. S. Redpath, J. Wilson, and S. Roos provided valuable comments on the manuscript. This study was funded by the Royal Society for the Protection of Birds, Scottish Natural Heritage, and the Cairngorms National Park Authority. J.L.L. was supported by the Natural Environment Research Council.Peer reviewedPublisher PD

    Environmental drivers of large-scale movements of baleen whales in the mid-North Atlantic Ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Perez-Jorge, S., Tobena, M., Prieto, R., Vandeperre, F., Calmettes, B., Lehodey, P., & Silva, M. A. Environmental drivers of large-scale movements of baleen whales in the mid-North Atlantic Ocean. Diversity and Distributions, 00, (2020): 1-16, doi:10.1111/ddi.13038.Aim Understanding the environmental drivers of movement and habitat use of highly migratory marine species is crucial to implement appropriate management and conservation measures. However, this requires quantitative information on their spatial and temporal presence, which is limited in the high seas. Here, we aimed to gain insights of the essential habitats of three baleen whale species around the mid‐North Atlantic (NA) region, linking their large‐scale movements with information on oceanographic and biological processes. Location Mid‐NA Ocean. Methods We present the first study combining data from 31 satellite tracks of baleen whales (15, 10 and 6 from fin, blue and sei whales, respectively) from March to July (2008–2016) with data on remotely sensed oceanography and mid‐ and lower trophic level biomass derived from the spatial ecosystem and population dynamics model (SEAPODYM). A Bayesian switching state‐space model was applied to obtain regular tracks and correct for location errors, and pseudo‐absences were created through simulated positions using a correlated random walk model. Based on the tracks and pseudo‐absences, we applied generalized additive mixed models (GAMMs) to determine the probability of occurrence and predict monthly distributions. Results This study provides the most detailed research on the spatio‐temporal distribution of baleen whales in the mid‐NA, showing how dynamic biophysical processes determine their habitat preference. Movement patterns were mainly influenced by the interaction of temperature and the lower trophic level biomass; however, this relationship differed substantially among species. Best‐fit models suggest that movements of whales migrating towards more productive areas in northern latitudes were constrained by depth and eddy kinetic energy. Main conclusions These novel insights highlight the importance of integrating telemetry data with spatially explicit prey models to understand which factors shape the movement patterns of highly migratory species across large geographical scales. In addition, our outcomes could contribute to inform management of anthropogenic threats to baleen whales in sparsely surveyed region.We are very grateful to Cláudia Oliveira, Irma Cascão, Maria João Cruz, Miriam Romagosa and many volunteers, skilled skippers, crew and spotters that participated in the tagging fieldwork. This work was supported by Fundação para a Ciência e Tecnologia (FCT), Azores 2020 Operational Programme and Fundo Regional da Ciência e Tecnologia (FRCT) through research projects FCT‐Exploratory project (IF/00943/2013/CP1199/CT0001), TRACE (PTDC/MAR/74071/2006) and MAPCET (M2.1.2/F/012/2011) co‐funded by FEDER, COMPETE, QREN, POPH, ESF, ERDF, Portuguese Ministry for Science and Education, and Proconvergencia Açores/EU Program. We also acknowledge funds provided by FCT to MARE, through the strategic project UID/MAR/04292/2013. SPJ was supported by a postdoctoral grant (REF.GREENUP/001‐2016), MT by a DRCT doctoral grant (M3.1.a/F/028/2015), MAS by an FCT‐Investigator contract (IF/00943/2013), FV by an FCT Investigator contract (CEECIND/03469/2017) and RP by an FCT postdoctoral grant (SFRH/BPD/108007/2015). LMTL modelling work has been supported by the CMEMS Service Evolution GREENUP project, funded by Mercator Ocean. We are grateful to Elliott Hazen for offering guidance and advice, and to two anonymous referees whose comments greatly improved this work

    Rainfall Variability along the Southern Flank of the Bambouto Mountain(West-Cameroon)

    Get PDF
    This paper presents the rainfall variability along the southern flank of the Bambouto mountain. Data were collected from rain gauges, while spatial variability was estimated through daily recorded data. Monthly and annual data were used to draw isohyetes via the triangular method, with linear interpolations between observation points. Results show that rainfall is highly variable along the slope. Daily rainfall amounts range from 0.1 mm to 120 mm. Mean yearly rainfall is 1918.1 mm. Rainfall amount does not have a linear relationship with altitude. Dschang is characterised by abnormally high rainfall. Following a North-South direction, rainfall decreases from Dschang to a Melang-Loung-Djuttitsa axis. From this axis, the gradient reverses as rainfall increases rapidly towards the Mélétan mountain. The existence of the relatively dry zone within the hillside seems to be due to the influence of two air masses. The first is cold and very wet which moves from the Mamfe basin to the summit zone where it starts to warm up as it flows towards Melang and Loung where temperature increases. The second comes from the south to south-east monsoon which is also impoverished during the ascension to higher altitudes. It is also likely that a third air mass from the dry harmattan is involved depending on the position of the ITCZ

    EEG-based cognitive control behaviour assessment: an ecological study with professional air traffic controllers

    Get PDF
    Several models defining different types of cognitive human behaviour are available. For this work, we have selected the Skill, Rule and Knowledge (SRK) model proposed by Rasmussen in 1983. This model is currently broadly used in safety critical domains, such as the aviation. Nowadays, there are no tools able to assess at which level of cognitive control the operator is dealing with the considered task, that is if he/she is performing the task as an automated routine (skill level), as procedures-based activity (rule level), or as a problem-solving process (knowledge level). Several studies tried to model the SRK behaviours from a Human Factor perspective. Despite such studies, there are no evidences in which such behaviours have been evaluated from a neurophysiological point of view, for example, by considering brain activity variations across the different SRK levels. Therefore, the proposed study aimed to investigate the use of neurophysiological signals to assess the cognitive control behaviours accordingly to the SRK taxonomy. The results of the study, performed on 37 professional Air Traffic Controllers, demonstrated that specific brain features could characterize and discriminate the different SRK levels, therefore enabling an objective assessment of the degree of cognitive control behaviours in realistic setting
    corecore