1,424 research outputs found

    On the Construction of Safe Controllable Regions for Affine Systems with Applications to Robotics

    Full text link
    This paper studies the problem of constructing in-block controllable (IBC) regions for affine systems. That is, we are concerned with constructing regions in the state space of affine systems such that all the states in the interior of the region are mutually accessible through the region's interior by applying uniformly bounded inputs. We first show that existing results for checking in-block controllability on given polytopic regions cannot be easily extended to address the question of constructing IBC regions. We then explore the geometry of the problem to provide a computationally efficient algorithm for constructing IBC regions. We also prove the soundness of the algorithm. We then use the proposed algorithm to construct safe speed profiles for different robotic systems, including fully-actuated robots, ground robots modeled as unicycles with acceleration limits, and unmanned aerial vehicles (UAVs). Finally, we present several experimental results on UAVs to verify the effectiveness of the proposed algorithm. For instance, we use the proposed algorithm for real-time collision avoidance for UAVs.Comment: 17 pages, 18 figures, under review for publication in Automatic

    Feedback Systems: An Introduction for Scientists and Engineers

    Get PDF
    This book provides an introduction to the basic principles and tools for the design and analysis of feedback systems. It is intended to serve a diverse audience of scientists and engineers who are interested in understanding and utilizing feedback in physical, biological, information and social systems.We have attempted to keep the mathematical prerequisites to a minimum while being careful not to sacrifice rigor in the process. We have also attempted to make use of examples from a variety of disciplines, illustrating the generality of many of the tools while at the same time showing how they can be applied in specific application domains. A major goal of this book is to present a concise and insightful view of the current knowledge in feedback and control systems. The field of control started by teaching everything that was known at the time and, as new knowledge was acquired, additional courses were developed to cover new techniques. A consequence of this evolution is that introductory courses have remained the same for many years, and it is often necessary to take many individual courses in order to obtain a good perspective on the field. In developing this book, we have attempted to condense the current knowledge by emphasizing fundamental concepts. We believe that it is important to understand why feedback is useful, to know the language and basic mathematics of control and to grasp the key paradigms that have been developed over the past half century. It is also important to be able to solve simple feedback problems using back-of-the-envelope techniques, to recognize fundamental limitations and difficult control problems and to have a feel for available design methods. This book was originally developed for use in an experimental course at Caltech involving students from a wide set of backgrounds. The course was offered to undergraduates at the junior and senior levels in traditional engineering disciplines, as well as first- and second-year graduate students in engineering and science. This latter group included graduate students in biology, computer science and physics. Over the course of several years, the text has been classroom tested at Caltech and at Lund University, and the feedback from many students and colleagues has been incorporated to help improve the readability and accessibility of the material. Because of its intended audience, this book is organized in a slightly unusual fashion compared to many other books on feedback and control. In particular, we introduce a number of concepts in the text that are normally reserved for second-year courses on control and hence often not available to students who are not control systems majors. This has been done at the expense of certain traditional topics, which we felt that the astute student could learn independently and are often explored through the exercises. Examples of topics that we have included are nonlinear dynamics, Lyapunov stability analysis, the matrix exponential, reachability and observability, and fundamental limits of performance and robustness. Topics that we have deemphasized include root locus techniques, lead/lag compensation and detailed rules for generating Bode and Nyquist plots by hand. Several features of the book are designed to facilitate its dual function as a basic engineering text and as an introduction for researchers in natural, information and social sciences. The bulk of the material is intended to be used regardless of the audience and covers the core principles and tools in the analysis and design of feedback systems. Advanced sections, marked by the “dangerous bend” symbol shown here, contain material that requires a slightly more technical background, of the sort that would be expected of senior undergraduates in engineering. A few sections are marked by two dangerous bend symbols and are intended for readers with more specialized backgrounds, identified at the beginning of the section. To limit the length of the text, several standard results and extensions are given in the exercises, with appropriate hints toward their solutions. To further augment the printed material contained here, a companion web site has been developed and is available from the publisher’s web page: http://press.princeton.edu/titles/8701.html The web site contains a database of frequently asked questions, supplemental examples and exercises, and lecture material for courses based on this text. The material is organized by chapter and includes a summary of the major points in the text as well as links to external resources. The web site also contains the source code for many examples in the book, as well as utilities to implement the techniques described in the text. Most of the code was originally written using MATLAB M-files but was also tested with LabView MathScript to ensure compatibility with both packages. Many files can also be run using other scripting languages such as Octave, SciLab, SysQuake and Xmath. The first half of the book focuses almost exclusively on state space control systems. We begin in Chapter 2 with a description of modeling of physical, biological and information systems using ordinary differential equations and difference equations. Chapter 3 presents a number of examples in some detail, primarily as a reference for problems that will be used throughout the text. Following this, Chapter 4 looks at the dynamic behavior of models, including definitions of stability and more complicated nonlinear behavior. We provide advanced sections in this chapter on Lyapunov stability analysis because we find that it is useful in a broad array of applications and is frequently a topic that is not introduced until later in one’s studies. The remaining three chapters of the first half of the book focus on linear systems, beginning with a description of input/output behavior in Chapter 5. In Chapter 6, we formally introduce feedback systems by demonstrating how state space control laws can be designed. This is followed in Chapter 7 by material on output feedback and estimators. Chapters 6 and 7 introduce the key concepts of reachability and observability, which give tremendous insight into the choice of actuators and sensors, whether for engineered or natural systems. The second half of the book presents material that is often considered to be from the field of “classical control.” This includes the transfer function, introduced in Chapter 8, which is a fundamental tool for understanding feedback systems. Using transfer functions, one can begin to analyze the stability of feedback systems using frequency domain analysis, including the ability to reason about the closed loop behavior of a system from its open loop characteristics. This is the subject of Chapter 9, which revolves around the Nyquist stability criterion. In Chapters 10 and 11, we again look at the design problem, focusing first on proportional-integral-derivative (PID) controllers and then on the more general process of loop shaping. PID control is by far the most common design technique in control systems and a useful tool for any student. The chapter on frequency domain design introduces many of the ideas of modern control theory, including the sensitivity function. In Chapter 12, we combine the results from the second half of the book to analyze some of the fundamental trade-offs between robustness and performance. This is also a key chapter illustrating the power of the techniques that have been developed and serving as an introduction for more advanced studies. The book is designed for use in a 10- to 15-week course in feedback systems that provides many of the key concepts needed in a variety of disciplines. For a 10-week course, Chapters 1–2, 4–6 and 8–11 can each be covered in a week’s time, with the omission of some topics from the final chapters. A more leisurely course, spread out over 14–15 weeks, could cover the entire book, with 2 weeks on modeling (Chapters 2 and 3) — particularly for students without much background in ordinary differential equations — and 2 weeks on robust performance (Chapter 12). The mathematical prerequisites for the book are modest and in keeping with our goal of providing an introduction that serves a broad audience. We assume familiarity with the basic tools of linear algebra, including matrices, vectors and eigenvalues. These are typically covered in a sophomore-level course on the subject, and the textbooks by Apostol [10], Arnold [13] and Strang [187] can serve as good references. Similarly, we assume basic knowledge of differential equations, including the concepts of homogeneous and particular solutions for linear ordinary differential equations in one variable. Apostol [10] and Boyce and DiPrima [42] cover this material well. Finally, we also make use of complex numbers and functions and, in some of the advanced sections, more detailed concepts in complex variables that are typically covered in a junior-level engineering or physics course in mathematical methods. Apostol [9] or Stewart [186] can be used for the basic material, with Ahlfors [6], Marsden and Hoffman [146] or Saff and Snider [172] being good references for the more advanced material. We have chosen not to include appendices summarizing these various topics since there are a number of good books available. One additional choice that we felt was important was the decision not to rely on a knowledge of Laplace transforms in the book. While their use is by far the most common approach to teaching feedback systems in engineering, many students in the natural and information sciences may lack the necessary mathematical background. Since Laplace transforms are not required in any essential way, we have included them only in an advanced section intended to tie things together for students with that background. Of course, we make tremendous use of transfer functions, which we introduce through the notion of response to exponential inputs, an approach we feel is more accessible to a broad array of scientists and engineers. For classes in which students have already had Laplace transforms, it should be quite natural to build on this background in the appropriate sections of the text. Acknowledgments: The authors would like to thank the many people who helped during the preparation of this book. The idea for writing this book came in part from a report on future directions in control [155] to which Stephen Boyd, Roger Brockett, John Doyle and Gunter Stein were major contributors. Kristi Morgansen and Hideo Mabuchi helped teach early versions of the course at Caltech on which much of the text is based, and Steve Waydo served as the head TA for the course taught at Caltech in 2003–2004 and provided numerous comments and corrections. Charlotta Johnsson and Anton Cervin taught from early versions of the manuscript in Lund in 2003–2007 and gave very useful feedback. Other colleagues and students who provided feedback and advice include Leif Andersson, John Carson, K. Mani Chandy, Michel Charpentier, Domitilla Del Vecchio, Kate Galloway, Per Hagander, Toivo Henningsson Perby, Joseph Hellerstein, George Hines, Tore Hägglund, Cole Lepine, Anders Rantzer, Anders Robertsson, Dawn Tilbury and Francisco Zabala. The reviewers for Princeton University Press and Tom Robbins at NI Press also provided valuable comments that significantly improved the organization, layout and focus of the book. Our editor, Vickie Kearn, was a great source of encouragement and help throughout the publishing process. Finally, we would like to thank Caltech, Lund University and the University of California at Santa Barbara for providing many resources, stimulating colleagues and students, and pleasant working environments that greatly aided in the writing of this book

    On differential-algebraic control systems

    Get PDF
    In der vorliegenden Dissertation werden differential-algebraische Gleichungen (differential-algebraic equations, DAEs) der Form \ddt E x = Ax + f betrachtet, wobei EE und AA beliebige Matrizen sind. Falls EE nichtverschwindende Einträge hat, dann kommen in der Gleichung Ableitungen der entsprechenden Komponenten von xx vor. Falls EE eine Nullzeile hat, dann kommen in der entsprechenden Gleichung keine Ableitungen vor und sie ist rein algebraisch. Daher werden Gleichungen vom Typ \ddt E x = Ax + f differential-algebraische Gleichungen genannt. Ein Ziel dieser Dissertation ist es, eine strukturelle Zerlegung einer DAE in vier Teile herzuleiten: einen ODE-Anteil, einen nilpotenten Anteil, einen unterbestimmten Anteil und einen überbestimmten Anteil. Jeder Anteil beschreibt ein anderes Lösungsverhalten in Hinblick auf Existenz und Eindeutigkeit von Lösungen für eine vorgegebene Inhomogenität ff und Konsistenzbedingungen an ff. Die Zerlegung, namentlich die quasi-Kronecker Form (QKF), verallgemeinert die wohlbekannte Kronecker-Normalform und behebt einige ihrer Nachteile. Die QKF wird ausgenutzt, um verschiedene Konzepte der Kontrollierbarkeit und Stabilisierbarkeit für DAEs mit~f=Buf=Bu zu studieren. Hier bezeichnet uu den Eingang des differential-algebraischen Systems. Es werden Zerlegungen unter System- und Feedback-Äquivalenz, sowie die Folgen einer Behavioral-Steuerung Kxx+Kuu=0K_x x + K_u u = 0 für die Stabilisierung des Systems untersucht. Falls für das DAE-System zusätzlich eine Ausgangs-Gleichung y=Cxy=Cx gegeben ist, dann lässt sich das Konzept der Nulldynamik wie folgt definieren: die Nulldynamik ist, grob gesagt, die Dynamik, die am Ausgang nicht sichtbar ist, d.h. die Menge aller Lösungs-Trajektorien (x,u,y)(x,u,y) mit y=0y=0. Für rechts-invertierbare Systeme mit autonomer Nulldynamik wird eine Zerlegung hergeleitet, welche die Nulldynamik entkoppelt. Diese versetzt uns in die Lage, eine Behavior-Steuerung zu entwickeln, die das System stabilisiert, vorausgesetzt die Nulldynamik selbst ist stabil. Wir betrachten auch zwei Regelungs-Strategien, die von den Eigenschaften der oben genannten System-Klasse profitieren: Hochverstärkungs- und Funnel-Regelung. Ein System \ddt E x = Ax + Bu, y=Cxy=Cx, hat die Hochverstärkungseigenschaft, wenn es durch die Anwendung der proportionalen Ausgangsrückführung u=kyu=-ky, mit k>0k>0 hinreichend groß, stabilisiert werden kann. Wir beweisen, dass rechts-invertierbare Systeme mit asymptotisch stabiler Nulldynamik, die eine bestimmte Relativgrad-Annahme erfüllen, die Hochverstärkungseigenschaft haben. Während der Hochverstärkungs-Regler recht einfach ist, ist es jedoch a priori nicht bekannt, wie groß die Verstärkungskonstante kk gewählt werden muss. Dieses Problem wird durch den Funnel-Regler gelöst: durch die adaptive Justierung der Verstärkung über eine zeitabhängige Funktion k()k(\cdot) und die Ausnutzung der Hochverstärkungseigenschaft wird erreicht, dass große Werte k(t)k(t) nur dann angenommen werden, wenn sie nötig sind. Eine weitere wesentliche Eigenschaft ist, dass der Funnel-Regler das transiente Verhalten des Fehlers e=yyrefe=y-y_{\rm ref} der Bahnverfolgung, wobei yrefy_{\rm ref} die Referenztrajektorie ist, beachtet. Für einen vordefinierten Performanz-Trichter (funnel) ψ\psi wird erreicht, dass e(t)<ψ(t)\|e(t)\|<\psi(t). Schließlich wird der Funnel-Regler auf die Klasse von MNA-Modellen von passiven elektrischen Schaltkreisen mit asymptotisch stabilen invarianten Nullstellen angewendet. Dies erfordert die Einschränkung der Menge der zulässigen Referenztrajektorien auf solche die, in gewisser Weise, die Kirchhoffschen Gesetze punktweise erfüllen.In this dissertation we study differential-algebraic equations (DAEs) of the form Ex'=Ax+f. One aim of the thesis is to derive the quasi-Kronecker form (QKF), which decomposes the DAE into four parts: the ODE part, nilpotent part, underdetermined part and overdetermined part. Each part describes a different solution behavior. The QKF is exploited to study the different controllability and stabilizability concepts for DAEs with f=Bu, where u is the input of the system. Feedback decompositions, behavioral control and stabilization are investigated. For DAE systems with output equation y=Cx, we may define the concept of zero dynamics, which are those dynamics that are not visible at the output. For right-invertible systems with autonomous zero dynamics a decomposition is derived, which decouples the zero dynamics of the system and allows for high-gain and funnel control. It is shown, that the funnel controller achieves tracking of a reference trajectory by the output signal with prescribed transient behavior. Finally, the funnel controller is applied to the class of MNA models of passive electrical circuits with asymptotically stable invariant zeros

    Modeling and Analyzing Cyber-Physical Systems Using Hybrid Predicate Transition Nets

    Get PDF
    Cyber-Physical Systems (CPSs) are software controlled physical devices that are being used everywhere from utility features in household devices to safety-critical features in cars, trains, aircraft, robots, smart healthcare devices. CPSs have complex hybrid behaviors combining discrete states and continuous states capturing physical laws. Developing reliable CPSs are extremely difficult. Formal modeling methods are especially useful for abstracting and understanding complex systems and detecting and preventing early system design problems. To ensure the dependability of formal models, various analysis techniques, including simulation and reachability analysis, have been proposed in recent decades. This thesis aims to provide a unified formal modeling and analysis methodology for studying CPSs. Firstly, this thesis contributes to the modeling and analysis of discrete, continuous, and hybrid systems. This work enhances modeling of discrete systems using predicate transition nets (PrTNs) by fully realizing the underlying specification through incorporating the first-order logic with set theory, improving the type system, and providing incremental model composition. This work enhances the technique of analyzing discrete systems using PrTN by improving the simulation algorithm and its efficient implementation. This work also improves the analysis of discrete systems using SPIN by providing a more accurate and complete translation method. Secondly, this work contributes to the modeling and analysis of hybrid systems by proposing an extension of PrTNs, hybrid predicate transition nets (HPrTNs). The proposed method incorporates a novel concept of token evolution, which nicely addresses the continuous state evolution and the conflicts present in other related works. This work presents a powerful simulation capability that can handle linear, non-linear dynamics, transcendental functions through differential equations. This work also provides a complementary technique for reachability analysis through the translation of HPrTN models for analysis using SpaceEx

    Controllability of linear differential-algebraic systems - A survey

    Get PDF
    Different concepts related to controllability of differential-algebraic equations are described. The class of systems considered consists of linear differential-algebraic equations with constant coefficients. Regularity, which is, loosely speaking, a concept related to existence and uniqueness of solutions for any inhomogeneity, is not required in this article. The concepts of impulse controllability, controllability at infinity, behavioral controllability, strong and complete controllability are described and defined in time-domain. Equivalent criteria that generalize the Hautus test are presented and proved. Special emphasis is placed on normal forms under state space transformation and, further, under state space, input and feedback transformations. Special forms generalizing the Kalman decomposition and Brunovsky form are presented. Consequences for state feedback design and geometric interpretation of the space of reachable states in terms of invariant subspaces are proved

    A new generalized particle approach to parallel bandwidth allocation

    Get PDF
    This paper presents a new generalized particle (GP) approach to dynamical optimization of network bandwidth allocation, which can also be used to optimize other resource assignments in networks. By using the GP model, the complicated network bandwidth allocation problem is transformed into the kinematics and dynamics of numerous particles in two reciprocal dual force-fields. The proposed model and algorithm are featured by the powerful processing ability under a complex environment that involves the various interactions among network entities, the market mechanism between the demands and service, and other phenomena common in networks, such as congestion, metabolism, and breakdown of network entities. The GP approach also has the advantages in terms of the higher parallelism, lower computation complexities, and the easiness for hardware implementation. The properties of the approach, including the correctness, convergency and stability, are discussed in details. Simulation results attest to the effectiveness and suitability of the proposed approach. © 2006 Elsevier B.V. All rights reserved.postprin
    corecore