2,264 research outputs found

    Dynamics and stability issues of a single-inductor dual-switching DC-DC converter

    Get PDF
    A single-inductor two-input two-output power electronic dc–dc converter can be used to regulate two generally nonsymmetric positive and negative outputs by means of a pulsewidth modulation with a double voltage feedback. This paper studies the dynamic behavior of this system. First, the operation modes and the steady-state properties of the converter are addressed, and, then, a stability analysis that includes both the power stage and control parameters is carried out. Different bifurcations are determined from the averaged model and from the discrete-time model. The Routh–Hurwitz criterion is used to obtain the stability regions of the averaged (slow-scale) dynamics in the design parameter space, and a discrete-time approach is used to obtain more accurate results and to detect possible (fast-scale) subharmonic oscillations. Experimental measurements were taken from a system prototype to confirm the analytical results and numerical simulations. Some possible nonsmooth bifurcations due to the change in the switching patterns are also illustrated.Postprint (published version

    Experimental Test bed to De-Risk the Navy Advanced Development Model

    Get PDF
    This paper presents a reduced scale demonstration test-bed at the University of Texas’ Center for Electromechanics (UT-CEM) which is well equipped to support the development and assessment of the anticipated Navy Advanced Development Model (ADM). The subscale ADM test bed builds on collaborative power management experiments conducted as part of the Swampworks Program under the US/UK Project Arrangement as well as non-military applications. The system includes the required variety of sources, loads, and controllers as well as an Opal-RT digital simulator. The test bed architecture is described and the range of investigations that can be carried out on it is highlighted; results of preliminary system simulations and some initial tests are also provided. Subscale ADM experiments conducted on the UT-CEM microgrid can be an important step in the realization of a full-voltage, full-power ADM three-zone demonstrator, providing a test-bed for components, subsystems, controls, and the overall performance of the Medium Voltage Direct Current (MVDC) ship architecture.Center for Electromechanic

    Local control of multiple module converters with ratings-based load sharing

    Get PDF
    Multiple module dc-dc converters show promise in meeting the increasing demands on ef- ficiency and performance of energy conversion systems. In order to increase reliability, maintainability, and expandability, a modular approach in converter design is often desired. This thesis proposes local control of multiple module converters as an alternative to using a central controller or master controller. A power ratings-based load sharing scheme that allows for uniform and non-uniform sharing is introduced. Focus is given to an input series, output parallel (ISOP) configuration and modules with a push-pull topology. Sensorless current mode (SCM) control is digitally implemented on separate controllers for each of the modules. The benefits of interleaving the switching signals of the distributed modules is presented. Simulation and experimental results demonstrate stable, ratings-based sharing in an ISOP converter with a high conversion ratio for both uniform and non-uniform load sharing cases

    Multifrequency Averaging of Hysteresis-Current-Controlled DC-DC Converters

    Get PDF
    Multifrequency averaging is one of the widely used modeling and simulation techniques today for the analysis and design of power electronic systems. This technique is capable of providing the average behavior as well as the ripple behavior of power electronic systems. Hysteresis current control has fast response and internal current stability through controlling switches to maintain the current within a given hysteresis band of a given current command. However the state space variables in a hysteresis controlled system cannot be directly approached by multifrequency averaging method because of time varing switching frequency. In this thesis, a method of applying multifrequency averaging to hysteresis current controlled dc-dc converters is proposed. A dc-dc converter model with the application of this method has been successfully developed and validated both in simulation and experiment

    Design and Implementation of Control Techniques of Power Electronic Interfaces for Photovoltaic Power Systems

    Get PDF
    The aim of this thesis is to scrutinize and develop four state-of-the-art power electronics converter control techniques utilized in various photovoltaic (PV) power conversion schemes accounting for maximum power extraction and efficiency. First, Cascade Proportional and Integral (PI) Controller-Based Robust Model Reference Adaptive Control (MRAC) of a DC-DC boost converter has been designed and investigated. Non-minimum phase behaviour of the boost converter due to right half plane zero constitutes a challenge and its non-linear dynamics complicate the control process while operating in continuous conduction mode (CCM). The proposed control scheme efficiently resolved complications and challenges by using features of cascade PI control loop in combination with properties of MRAC. The accuracy of the proposed control system’s ability to track the desired signals and regulate the plant process variables in the most beneficial and optimised way without delay and overshoot is verified. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed two times with considerably improved disturbance rejection. Second, (P)roportional Gain (R)esonant and Gain Scheduled (P)roportional (PR-P) Controller has been designed and investigated. The aim of this controller is to create a variable perturbation size real-time adaptive perturb and observe (P&O) maximum power point tracking (MPPT) algorithm. The proposed control scheme resolved the drawbacks of conventional P&O MPPT method associated with the use of constant perturbation size that leads to a poor transient response and high continuous steady-state oscillations. The prime objective of using the PR-P controller is to utilize inherited properties of the signal produced by the controller’s resonant path and integrate it to update best estimated perturbation that represents the working principle of extremum seeking control (ESC) to use in a P&O algorithm that characterizes the overall system learning-based real time adaptive (RTA). Additionally, utilization of internal dynamics of the PR-P controller overcome the challenges namely, complexity, computational burden, implantation cost and slow tracking performance in association with commonly used soft computing intelligent systems and adaptive control strategies. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed five times with reduced steady-state oscillations around maximum power point (MPP) and more than 99% energy extracting efficiency.Third, the interleaved buck converter based photovoltaic (PV) emulator current control has been investigated. A proportional-resonant-proportional (PR-P) controller is designed to resolve the drawbacks of conventional PI controllers in terms of phase management which means balancing currents evenly between active phases to avoid thermally stressing and provide optimal ripple cancellation in the presence of parameter uncertainties. The proposed controller shows superior performance in terms of 10 times faster-converging transient response, zero steady-state error with significant reduction in current ripple. Equal load sharing that constitutes the primary concern in multi-phase converters has been achieved with the proposed controller. Implementing of robust control theory involving comprehensive time and frequency domain analysis reveals 13% improvement in the robust stability margin and 12-degree bigger phase toleration with the PR-P controller. Fourth, a symmetrical pole placement Method-based Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller has been designed and investigated. The proposed PR-P controller resolved the issues associated with the use of the PI controller which are tracking repeating control input signal with zero steady-state and mitigating the 3rd order harmonic component injected into the grid for single-phase PV systems. Additionally, the PR-P controller has overcome the drawbacks of frequency detuning in the grid and increase in the magnitude of odd number harmonics in the system that constitute the common concerns in the implementation of conventional PR controller. Moreover, the unprecedented design process based on changing notch filter dynamics with symmetrical pole placement around resonant frequency overcomes the limitations that are essentially complexity and dependency on the precisely modelled system. The verification and validation process of the proposed control schemes has been conducted using MATLAB/Simulink and implementing MATLAB/Simulink/State flow on dSPACE Real-time-interface (RTI) 1007 processor, DS2004 High-Speed A/D and CP4002 Timing and Digital I/O boards

    Control Strategies of DC–DC Converter in Fuel Cell Electric Vehicle

    Get PDF
    There is a significant need to research and develop a compatible controller for the DC–DC converter used in fuel cells electric vehicles (EVs). Research has shown that fuel cells (FC) EVs have the potential of providing a far more promising performance in comparison to conventional combustion engine vehicles. This study aims to present a universal sliding mode control (SMC) technique to control the DC bus voltage under varying load conditions. Additionally, this research will utilize improved DC–DC converter topologies to boost the output voltage of the FCs. A DC–DC converter with a properly incorporated control scheme can be utilized to regulate the DC bus voltage–. A conventional linear controller, like a PID controller, is not suitable to be used as a controller to regulate the output voltage in the proposed application. This is due to the nonlinearity of the converter. Furthermore, this thesis will explore the use of a secondary power source which will be utilized during the start–up and transient condition of the FCEV. However, in this instance, a simple boost converter can be used as a reference to step–up the fuel cell output voltage. In terms of application, an FCEV requires stepping –up of the voltage through the use of a high power DC–DC converter or chopper. A control scheme must be developed to adjust the DC bus or load voltage to meet the vehicle requirements as well as to improve the overall efficiency of the FCEV. A simple SMC structure can be utilized to handle these issues and stabilize the output voltage of the DC–DC converter to maintain and establish a constant DC–link voltage during the load variations. To address the aforementioned issues, this thesis presents a sliding mode control technique to control the DC bus voltage under varying load conditions using improved DC–DC converter topologies to boost and stabilize the output voltage of the FCs

    CONTROL STRATEGIES OF DC MICROGRID TO ENABLE A MORE WIDE-SCALE ADOPTION

    Get PDF
    Microgrids are gaining popularity in part for their ability to support increased penetration of distributed renewable energy sources, aiming to meet energy demand and overcome global warming concerns. DC microgrid, though appears promising, introduces many challenges in the design of control systems in order to ensure a reliable, secure and economical operation. To enable a wider adoption of DC microgrid, this dissertation examines to combine the characteristics and advantages of model predictive control (MPC) and distributed droop control into a hierarchy and fully autonomous control of the DC microgrid. In addition, new maximum power point tracking technique (MPPT) for solar power and active power decoupling technique for the inverter are presented to improve the efficiency and reliability of the DC microgrid. With the purpose of eliminating the oscillation around the maximum power point (MPP), an improved MPPT technique was proposed by adding a steady state MPP determination algorithm after the adaptive perturb and observe method. This control method is proved independent with the environmental conditions and has much smaller oscillations around the MPP compared to existing ones. Therefore, it helps increase the energy harvest efficiency of the DC microgrid with less continuous DC power ripple. A novel hierarchy strategy consisting of two control loops is proposed to the DC microgrid in study, which is composed of two PV boost converters, two battery bi-directional converters and one multi-level packed-u-cell inverter with grid connected. The primary loop task is the control of each energy unit in the DC microgrid based on model predictive current control. Compared with traditional PI controllers, MPC speeds up the control loop since it predicts error before the switching signal is applied to the converter. It is also free of tuning through the minimization of a flexible user-defined cost function. Thus, the proposed primary loop enables the system to be expandable by adding additional energy generation units without affecting the existing ones. Moreover, the maximum power point tracking and battery energy management of each energy unit are included in this loop. The proposed MPC also achieves unity power factor, low grid current total harmonics distortion. The secondary loop based on the proposed autonomous droop control identifies the operation modes for each converter: current source converter (CSC) or voltage source converter (VSC). To reduce the dependence on the high bandwidth communication line, the DC bus voltage is utilized as the trigger signal to the change of operation modes. With the sacrifice of small variations of bus voltage, a fully autonomous control can be realized. The proposed distributed droop control of different unit converters also eliminates the potential conflicts when more than two converters compete for the VSC mode. Single-phase inverter systems in the DC microgrid have low frequency power ripple, which adversely affects the system reliability and performance. A power decoupling circuit based on the proposed dual buck converters are proposed to address the challenges. The topology is free of shoot-through and deadtime concern and the control is independent with that of the main power stage circuit, which makes the design simpler and more reliable. Moreover, the design of both PI and MPC controllers are discussed and compared. While, both methods present satisfied decoupling performances on the system, the proposed MPC is simpler to be implemented. In conclusion, the DC microgrid may be more widely adopted in the future with the proposed control strategies to address the current challenges that hinder its further development

    Stability challenges and solutions in current-mode controlled power electronic converters

    Get PDF
    This dissertation focuses on stability issues in single-staged and multi-staged current controlled power electronic converters. Most current-mode control (CMC) approaches suffer from sub-harmonic oscillations. An external ramp is usually added to solve this problem. However, to guarantee stability this ramp has to be designed for the worst possible case which consequently over damps the response. Adaptive slope compensation (ASC) methods are the solution for this problem. In paper 1 of this dissertation, first three ASC methods will be investigated and analyzed through their small signal models. Then, through simulation analyses and experimental test of a variable-input voltage converter the results will be validated. Two of the methods studies in the first paper are peak CMC methods and the last one is called the projected cross point control (PCPC) approach. This method is relatively new. Therefore, a detailed discussion of the principles of operation of PCPC will be presented in paper 2. In addition, the small signal model of PCPC is developed and discussed through simulation and experimental analyses in the second paper of this dissertation. Peak, average, and hysteresis CMC schemes are used for comparison. In paper 3, the stability issues which arise in multistage converters will be addressed. A solid state transformer (SST) as an example of a multistage converter will be studied. A comprehensive small signal modeling will be conducted which helps for stability analysis of SST. Time domain simulations in Computer Aided Design software (PSCAD) are presented which validates the frequency domain analysis --Abstract, page iv

    Power Interface Design and System Stability Analysis for 400 V DC-Powered Data Centers

    Get PDF
    The demands of high performance cloud computation and internet services have increased in recent decades. These demands have driven the expansion of existing data centers and the construction of new data centers. The high costs of data center downtime are pushing designers to provide high reliability power supplies. Thus, there are significant research questions and challenges to design efficient and environmentally friendly data centers with address increasing energy prices and distributed energy developments. This dissertation work aims to study and investigate the suitable technologies of power interface and system level configuration for high efficiency and reliable data centers. A 400 V DC-powered data center integrated with solar power and hybrid energy storage is proposed to reduce the power loss and cable cost in data centers. A cascaded totem-pole bridgeless PFC converter to convert grid ac voltage to the 400 V dc voltage is proposed in this work. Three main control strategies are developed for the power converters. First, a model predictive control is developed for the cascaded totem-pole bridgeless PFC converter. This control provides stable transient performance and high power efficiency. Second, a power loss model based dual-phase-shift control is applied for the efficiency improvement of dual-active bridge converter. Third, an optimized maximum power point tracking (MPPT) control for solar power and a hybrid energy storage unit (HESU) control are given in this research work. The HESU consists of battery and ultracapacitor packs. The ultracapacitor can improve the battery lifetime and reduce any transients affecting grid side operation. The large signal model of a typical solar power integrated datacenter is built to analyze the system stability with various conditions. The MATLAB/Simulink™-based simulations are used to identify the stable region of the data center power supply. This can help to analyze the sensitivity of the circuit parameters, which include the cable inductance, resistance, and dc bus capacitance. This work analyzes the system dynamic response under different operating conditions to determine the stability of the dc bus voltage. The system stability under different percentages of solar power and hybrid energy storage integrated in the data center are also investigated
    • …
    corecore