6,033 research outputs found

    Automated Negotiation for Provisioning Virtual Private Networks Using FIPA-Compliant Agents

    No full text
    This paper describes the design and implementation of negotiating agents for the task of provisioning virtual private networks. The agents and their interactions comply with the FIPA specification and they are implemented using the FIPA-OS agent framework. Particular attention is focused on the design and implementation of the negotiation algorithms

    End-to-end resource management for federated delivery of multimedia services

    Get PDF
    Recently, the Internet has become a popular platform for the delivery of multimedia content. Currently, multimedia services are either offered by Over-the-top (OTT) providers or by access ISPs over a managed IP network. As OTT providers offer their content across the best-effort Internet, they cannot offer any Quality of Service (QoS) guarantees to their users. On the other hand, users of managed multimedia services are limited to the relatively small selection of content offered by their own ISP. This article presents a framework that combines the advantages of both existing approaches, by dynamically setting up federations between the stakeholders involved in the content delivery process. Specifically, the framework provides an automated mechanism to set up end-to-end federations for QoS-aware delivery of multimedia content across the Internet. QoS contracts are automatically negotiated between the content provider, its customers, and the intermediary network domains. Additionally, a federated resource reservation algorithm is presented, which allows the framework to identify the optimal set of stakeholders and resources to include within a federation. Its goal is to minimize delivery costs for the content provider, while satisfying customer QoS requirements. Moreover, the presented framework allows intermediary storage sites to be included in these federations, supporting on-the-fly deployment of content caches along the delivery paths. The algorithm was thoroughly evaluated in order to validate our approach and assess the merits of including intermediary storage sites. The results clearly show the benefits of our method, with delivery cost reductions of up to 80 % in the evaluated scenario

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Fuzzy logic based qos optimization mechanism for service composition

    Get PDF
    Increase emphasis on Quality of Service and highly changing environments make management of composite services a time consuming and complicated task. Adaptation approaches aim to mitigate the management problem by adjusting composite services to the environment conditions, maintaining functional and quality levels, and reducing human intervention. This paper presents an adaptation approach that implements self-optimization based on fuzzy logic. The proposed optimization model performs service selection based on the analysis of historical and real QoS data, gathered at different stages during the execution of composite services. The use of fuzzy inference systems enables the evaluation of the measured QoS values, helps deciding whether adaptation is needed or not, and how to perform service selection. Experimental results show significant improvements in the global QoS of the use case scenario, providing reductions up to 20.5% in response time, 33.4% in cost and 31.2% in energy consumption

    An architecture for user preference-based IoT service selection in cloud computing using mobile devices for smart campus

    Get PDF
    The Internet of things refers to the set of objects that have identities and virtual personalities operating in smart spaces using intelligent interfaces to connect and communicate within social environments and user context. Interconnected devices communicating to each other or to other machines on the network have increased the number of services. The concepts of discovery, brokerage, selection and reliability are important in dynamic environments. These concepts have emerged as an important field distinguished from conventional distributed computing by its focus on large-scale resource sharing, delivery and innovative applications. The usage of Internet of Things technology across different service provisioning environments has increased the challenges associated with service selection and discovery. Although a set of terms can be used to express requirements for the desired service, a more detailed and specific user interface would make it easy for the users to express their requirements using high-level constructs. In order to address the challenge of service selection and discovery, we developed an architecture that enables a representation of user preferences and manipulates relevant descriptions of available services. To ensure that the key components of the architecture work, algorithms (content-based and collaborative filtering) derived from the architecture were proposed. The architecture was tested by selecting services using content-based as well as collaborative algorithms. The performances of the algorithms were evaluated using response time. Their effectiveness was evaluated using recall and precision. The results showed that the content-based recommender system is more effective than the collaborative filtering recommender system. Furthermore, the results showed that the content-based technique is more time-efficient than the collaborative filtering technique

    A WOA-based optimization approach for task scheduling in cloud Computing systems

    Get PDF
    Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks

    Trusted resource allocation in volunteer edge-cloud computing for scientific applications

    Get PDF
    Data-intensive science applications in fields such as e.g., bioinformatics, health sciences, and material discovery are becoming increasingly dynamic and demanding with resource requirements. Researchers using these applications which are based on advanced scientific workflows frequently require a diverse set of resources that are often not available within private servers or a single Cloud Service Provider (CSP). For example, a user working with Precision Medicine applications would prefer only those CSPs who follow guidelines from HIPAA (Health Insurance Portability and Accountability Act) for implementing their data services and might want services from other CSPs for economic viability. With the generation of more and more data these workflows often require deployment and dynamic scaling of multi-cloud resources in an efficient and high-performance manner (e.g., quick setup, reduced computation time, and increased application throughput). At the same time, users seek to minimize the costs of configuring the related multi-cloud resources. While performance and cost are among the key factors to decide upon CSP resource selection, the scientific workflows often process proprietary/confidential data that introduces additional constraints of security postures. Thus, users have to make an informed decision on the selection of resources that are most suited for their applications while trading off between the key factors of resource selection which are performance, agility, cost, and security (PACS). Furthermore, even with the most efficient resource allocation across multi-cloud, the cost to solution might not be economical for all users which have led to the development of new paradigms of computing such as volunteer computing where users utilize volunteered cyber resources to meet their computing requirements. For economical and readily available resources, it is essential that such volunteered resources can integrate well with cloud resources for providing the most efficient computing infrastructure for users. In this dissertation, individual stages such as user requirement collection, user's resource preferences, resource brokering and task scheduling, in lifecycle of resource brokering for users are tackled. For collection of user requirements, a novel approach through an iterative design interface is proposed. In addition, fuzzy interference-based approach is proposed to capture users' biases and expertise for guiding their resource selection for their applications. The results showed improvement in performance i.e. time to execute in 98 percent of the studied applications. The data collected on user's requirements and preferences is later used by optimizer engine and machine learning algorithms for resource brokering. For resource brokering, a new integer linear programming based solution (OnTimeURB) is proposed which creates multi-cloud template solutions for resource allocation while also optimizing performance, agility, cost, and security. The solution was further improved by the addition of a machine learning model based on naive bayes classifier which captures the true QoS of cloud resources for guiding template solution creation. The proposed solution was able to improve the time to execute for as much as 96 percent of the largest applications. As discussed above, to fulfill necessity of economical computing resources, a new paradigm of computing viz-a-viz Volunteer Edge Computing (VEC) is proposed which reduces cost and improves performance and security by creating edge clusters comprising of volunteered computing resources close to users. The initial results have shown improved time of execution for application workflows against state-of-the-art solutions while utilizing only the most secure VEC resources. Consequently, we have utilized reinforcement learning based solutions to characterize volunteered resources for their availability and flexibility towards implementation of security policies. The characterization of volunteered resources facilitates efficient allocation of resources and scheduling of workflows tasks which improves performance and throughput of workflow executions. VEC architecture is further validated with state-of-the-art bioinformatics workflows and manufacturing workflows.Includes bibliographical references
    corecore