11,445 research outputs found

    A system-theoretic framework for privacy preservation in continuous-time multiagent dynamics

    Full text link
    In multiagent dynamical systems, privacy protection corresponds to avoid disclosing the initial states of the agents while accomplishing a distributed task. The system-theoretic framework described in this paper for this scope, denoted dynamical privacy, relies on introducing output maps which act as masks, rendering the internal states of an agent indiscernible by the other agents as well as by external agents monitoring all communications. Our output masks are local (i.e., decided independently by each agent), time-varying functions asymptotically converging to the true states. The resulting masked system is also time-varying, and has the original unmasked system as its limit system. When the unmasked system has a globally exponentially stable equilibrium point, it is shown in the paper that the masked system has the same point as a global attractor. It is also shown that existence of equilibrium points in the masked system is not compatible with dynamical privacy. Application of dynamical privacy to popular examples of multiagent dynamics, such as models of social opinions, average consensus and synchronization, is investigated in detail.Comment: 38 pages, 4 figures, extended version of arXiv preprint arXiv:1808.0808

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    DDH-MAC: a novel dynamic de-centralized hybrid MAC protocol for cognitive radio networks

    Get PDF
    The radio spectrum (3kHz - 300GHz) has become saturated and proven to be insufficient to address the proliferation of new wireless applications. Cognitive Radio Technology which is an opportunistic network and is equipped with fully programmable wireless devices that empowers the network by OODA cycle and then make intelligent decisions by adapting their MAC and physical layer characteristics such as waveform, has appeared to be the only solution for current low spectrum availability and under utilization problem. In this paper a novel Dynamic De-Centralized Hybrid “DDH-MAC” protocol for Cognitive Radio Networks has been presented which lies between Global Common Control Channel (GCCC) and non-GCCC categories of cognitive radio MAC protocols. DDH-MAC is equipped with the best features of GCCC MAC protocols but also overcomes the saturation and security issues in GCCC. To the best of authors' knowledge, DDH-MAC is the first protocol which is hybrid between GCCC and non-GCCC family of protocols. DDH-MAC provides multiple levels of security and partially use GCCC to transmit beacon which sets and announces local control channel for exchange of free channel list (FCL) sensed by the co-operatively communicating cognitive radio nodes, subsequently providing secure transactions among participating nodes over the decided local control channel. This paper describes the framework of the DDH-MAC protocol in addition to its pseudo code for implementation; it is shown that the pre-transmission time for DDH-MAC is on average 20% better while compared to other cognitive radio MAC protocols

    BAN-GZKP: Optimal Zero Knowledge Proof based Scheme for Wireless Body Area Networks

    Get PDF
    BANZKP is the best to date Zero Knowledge Proof (ZKP) based secure lightweight and energy efficient authentication scheme designed for Wireless Area Network (WBAN). It is vulnerable to several security attacks such as the replay attack, Distributed Denial-of-Service (DDoS) attacks at sink and redundancy information crack. However, BANZKP needs an end-to-end authentication which is not compliant with the human body postural mobility. We propose a new scheme BAN-GZKP. Our scheme improves both the security and postural mobility resilience of BANZKP. Moreover, BAN-GZKP uses only a three-phase authentication which is optimal in the class of ZKP protocols. To fix the security vulnerabilities of BANZKP, BAN-GZKP uses a novel random key allocation and a Hop-by-Hop authentication definition. We further prove the reliability of our scheme to various attacks including those to which BANZKP is vulnerable. Furthermore, via extensive simulations we prove that our scheme, BAN-GZKP, outperforms BANZKP in terms of reliability to human body postural mobility for various network parameters (end-to-end delay, number of packets exchanged in the network, number of transmissions). We compared both schemes using representative convergecast strategies with various transmission rates and human postural mobility. Finally, it is important to mention that BAN-GZKP has no additional cost compared to BANZKP in terms memory, computational complexity or energy consumption

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017
    • …
    corecore