714 research outputs found

    A cross-layer architecture to improve mobile host rate performance and to solve unfairness problem in WLANs

    Get PDF
    The evolution of the Internet has been mainly promoted in recent years by the emergence and pro- liferation of wireless access networks towards a global ambient and pervasive network accessed from mobile devices. These new access networks have introduced new MAC layers independently of the legacy "wire- oriented" protocols that are still at the heart of the pro- tocol stacks of the end systems. This principle of isola- tion and independence between layers advocated by the OSI model has its drawbacks of maladjustment between new access methods and higher-level protocols built on the assumption of a wired Internet. In this paper, we introduce and deliver solutions for several pathologi- cal communication behaviors resulting from the malad- justment between WLAN MAC and higher layer stan- dard protocols such as TCP/IP and UDP/IP. Specially, based on an efficient analytical model for WLANs band- width estimation, we address in this paper the two fol- lowing issues: 1) Performance degradation due to the lack of flow control between the MAC and upper layer resulting in potential MAC buffer overflow; 2) Unfair bandwidth share issues between various type of flows. We show how these syndromes can be efficiently solved from neutral "cross layer" interactions which entail no changes in the considered protocols and standards

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Measurement and Optimization of LTE Performance

    Get PDF
    4G Long Term Evolution (LTE) mobile system is the fourth generation communication system adopted worldwide to provide high-speed data connections and high-quality voice calls. Given the recent deployment by mobile service providers, unlike GSM and UMTS, LTE can be still considered to be in its early stages and therefore many topics still raise great interest among the international scientific research community: network performance assessment, network optimization, selective scheduling, interference management and coexistence with other communication systems in the unlicensed band, methods to evaluate human exposure to electromagnetic radiation are, as a matter of fact, still open issues. In this work techniques adopted to increase LTE radio performances are investigated. One of the most wide-spread solutions proposed by the standard is to implement MIMO techniques and within a few years, to overcome the scarcity of spectrum, LTE network operators will offload data traffic by accessing the unlicensed 5 GHz frequency. Our Research deals with an evaluation of 3GPP standard in a real test best scenario to evaluate network behavior and performance

    Tiheiden Wi-Fi verkkojen optimointi Markov-ketjumallien ja simuloidun jäähdytyksen avulla

    Get PDF
    Currently, the demand for wireless communication capacity is rising rapidly due to challenging applications such as video streaming and the emerging Internet of things. In meeting these ambitious requirements, the most important factor is predicted to be network densification, which refers to increasing the geographical density of simultaneously communicating devices. A natural choice for implementing dense networks is the wireless local area network technology Wi-Fi, characterized by being cheap and easy to deploy. Network density aggravates the harmful effects of interference and causes scarcity of free transmission bandwidth. To counter this, dense networks need radio resource management algorithms. This thesis presents a Wi-Fi radio resource management algorithm, which jointly optimizes access point channels, user association and transmission power. It estimates future throughput using a continuous time Markov chain based model, and finds solutions maximizing this estimate via a discrete search metaheuristic called simulated annealing. The algorithm is validated through a wide range of simulations where for instance network density is varied. The algorithm is found to be highly versatile, yielding good performance in all scenarios. Moreover, the general design approach places few restrictions on further algorithm improvement and extension. Markov chain modeling, although accurate in an idealized setting, turns out to be inaccurate with real-world Wi-Fi, with a simpler model offering similar accuracy but lighter computational load.Nykyisin vaatimukset langattoman tiedonsiirron kapasiteetille ovat voimakkaassa kasvussa johtuen haastavista sovelluksista kuten videon suoratoistosta ja tulossa olevasta esineiden Internetistä. Näiden vaatimusten täyttämiseksi tärkein keino on langattomien tiedonsiirtoverkkojen tihentäminen, mikä tarkoittaa yht’aikaa samalla maantieteellisellä alueella kommunikoivien laitteiden määrän kasvattamista. Luonnollinen valinta tiheiden verkkojen toteuttamiseen on langattomien lähiverkkojen teknologia Wi-Fi, jonka etuja ovat edullisuus ja asennuksen helppous. Langattoman verkon tiheys lisää haitallista interferenssiä ja aikaansaa pulaa vapaista lähetystaajuuksista. Näiden ongelmien ratkaisemiseksi tarvitaan radioresurssien hallinta-algoritmeja. Tässä työssä suunnitellaan Wi-Fiä varten radioresurssien hallinta-algoritmi, joka optimoi samanaikaisesti tukiasemien kanavia, käyttäjien allokaatiota tukiasemille sekä lähetystehoja. Se estimoi tulevia tiedonsiirtonopeuksia jatkuvan ajan Markov-ketjuihin pohjautuvan mallin avulla ja löytää tämän estimaatin maksimoivia ratkaisuja hyödyntämällä diskreettiä hakumenetelmää nimeltä simuloitu jäähdytys. Algoritmi validoidaan käyttäen monipuolista joukkoa simulaatioita, jossa vaihtelee esimerkiksi verkon tiheys. Algoritmi osoittautuu erittäin monipuoliseksi, sillä sen suorituskyky on hyvä kaikissa simulaatioskenaarioissa. Käytetyn lähestymistavan etuna on myös se, että se asettaa varsin vähän rajoituksia algoritmin jatkokehitykselle. Markov-ketjumallit osoittautuvat todellisen Wi-Fin tapauksessa epätarkoiksi, vaikka ne idealisoidussa ympäristössä ovatkin tarkkoja. Käy ilmi, että yksinkertaisemmalla mallilla saadaan vastaava tarkkuus, mutta laskentatehoa tarvitaan vähemmän

    An Efficient Framework of Congestion Control for Next-Generation Networks

    Get PDF
    The success of the Internet can partly be attributed to the congestion control algorithm in the Transmission Control Protocol (TCP). However, with the tremendous increase in the diversity of networked systems and applications, TCP performance limitations are becoming increasingly problematic and the need for new transport protocol designs has become increasingly important.Prior research has focused on the design of either end-to-end protocols (e.g., CUBIC) that rely on implicit congestion signals such as loss and/or delay or network-based protocols (e.g., XCP) that use precise per-flow feedback from the network. While the former category of schemes haveperformance limitations, the latter are hard to deploy, can introduce high per-packet overhead, and open up new security challenges. This dissertation explores the middle ground between these designs and makes four contributions. First, we study the interplay between performance and feedback in congestion control protocols. We argue that congestion feedback in the form of aggregate load can provide the richness needed to meet the challenges of next-generation networks and applications. Second, we present the design, analysis, and evaluation of an efficient framework for congestion control called Binary Marking Congestion Control (BMCC). BMCC uses aggregate load feedback to achieve efficient and fair bandwidth allocations on high bandwidth-delaynetworks while minimizing packet loss rates and average queue length. BMCC reduces flow completiontimes by up to 4x over TCP and uses only the existing Explicit Congestion Notification bits.Next, we consider the incremental deployment of BMCC. We study the bandwidth sharing properties of BMCC and TCP over different partial deployment scenarios. We then present algorithms for ensuring safe co-existence of BMCC and TCP on the Internet. Finally, we consider the performance of BMCC over Wireless LANs. We show that the time-varying nature of the capacity of a WLAN can lead to significant performance issues for protocols that require capacity estimates for feedback computation. Using a simple model we characterize the capacity of a WLAN and propose the usage of the average service rate experienced by network layer packets as an estimate for capacity. Through extensive evaluation, we show that the resulting estimates provide good performance
    corecore