541 research outputs found

    Dynamical systems as the main instrument for the constructions of new quadratic families and their usage in cryptography

    Get PDF
    Let K be a finite commutative ring and f = f(n) a bijective polynomial map f(n) of the Cartesian power K^n onto itself of a small degree c and of a large order. Let f^y be a multiple composition of f with itself in the group of all polynomial automorphisms, of free module K^n. The discrete logarithm problem with the pseudorandom base f(n) (solvef^y = b for y) is a hard task if n is sufficiently large. We will use families of algebraic graphs defined over K and corresponding dynamical systems for the explicit constructions of such maps f(n) of a large order with c = 2 such that all nonidentical powers f^y are quadratic polynomial maps. The above mentioned result is used in the cryptographical algorithms based on the maps f(n) – in the symbolic key exchange protocols and public keys algorithms

    On desynchronised El Gamal algorithm

    Get PDF
    Families of stable cyclic groups of nonlinear polynomial transformations of affine spaces KnK^n over general commutative ring KK of increasing with nn order can be used in the key exchange protocols and related to them El Gamal multivariate cryptosystems. We suggest to use high degree of noncommutativity of affine Cremona group and modify multivariate El Gamal algorithm via the usage of conjugations for two polynomials of kind gkg^k and g1g^{-1} given by key holder (Alice) or giving them as elements of different transformation groups. We present key exchange protocols based on twisted discrete logarithms problem which uses noncommutativity of semigroup. Recent results on the existence of families of stable transformations of prescribed degree and density and exponential order over finite fields can be used for the implementation of schemes as above with feasible computational complexity. We introduce an example of a new implemented quadratic multivariate cryptosystem based on the above mentioned ideas

    Extremal algebraic graphs, quadratic multivariate public keys and temporal rules

    Get PDF
    We introduce large groups of quadratic transformations of a vector space over the finite fields defined via symbolic computations with the usage of algebraic constructions of Extremal Graph Theory. They can serve as platforms for the protocols of Noncommutative Cryptography with security based on the complexity of word decomposition problem in noncommutative polynomial transformation group. The modifications of these symbolic computations in the case of large fields of characteristic two allow us to define quadratic bijective multivariate public keys such that the inverses of public maps has a large polynomial degree. Another family of public keys is defined over arbitrary commutative ring with unity. We suggest the usage of constructed protocols for the private delivery of quadratic encryption maps instead of the public usage of these transformations, i.e. the idea of temporal multivariate rules with their periodical change

    On New Examples of Families of Multivariate Stable Maps and their Cryptographical Applications

    Get PDF
    Let K be a general finite commutative ring. We refer to a familyg^n, n = 1; 2;... of bijective polynomial multivariate maps of K^n as a family with invertible decomposition gn = g^1^n g^2^n...g^k^n , such that the knowledge of the composition of g^2^nallows computation of g^2^n for O(n^s) (s > 0) elementary steps. Apolynomial map g is stable if all non-identical elements of kind g^t, t > 0 are of the same degree.We construct a new family of stable elements with invertible decomposition.This is the first construction of the family of maps based on walks on the bipartitealgebraic graphs defined over K, which are not edge transitive. We describe theapplication of the above mentioned construction for the development of streamciphers, public key algorithms and key exchange protocols. The absence of edgetransitive group essentially complicates cryptanalysis

    On desynchronised multivariate algorithms of El Gamal type for stable semigroups of affine Cremona group

    Get PDF
    Families of stable cyclic groups of nonlinear polynomial transformations of affine spaces Kn over general commutative ring K of increasing with n order can be used in the key exchange protocols and related to them El Gamal multivariate cryptosystems. To use high degree of noncommutativity of affine Cremona group correspondents have to modify multivariate El Gamal algorithm via the usage of conjugations for two polynomials of kind gk and g−1 given by key holder (Alice) or giving them as elements of different transformation groups. The idea of hidden tame homomorphism and comlexity of decomposition of polynomial transwormation into word of elements of Cremona semigroup can be used. We suggest usage of new explicit constructions of infinite families of large stable subsemigroups of affine Cremona group of bounded degree as instruments of multivariate key exchange protocols. Recent results on generation of families of stable transformations of small degree and density via technique of symbolic walks on algebraic graphs are observed. Some of them used for the implementation of schemes as above with feasible computational complexity. We consider an example of a new implemented quadratic multivariate cryptosystem based on the above mentioned ideas

    Pseudorandom sequence generation using binary cellular automata

    Get PDF
    Tezin basılısı İstanbul Şehir Üniversitesi Kütüphanesi'ndedir.Random numbers are an integral part of many applications from computer simulations, gaming, security protocols to the practices of applied mathematics and physics. As randomness plays more critical roles, cheap and fast generation methods are becoming a point of interest for both scientific and technological use. Cellular Automata (CA) is a class of functions which attracts attention mostly due to the potential it holds in modeling complex phenomena in nature along with its discreteness and simplicity. Several studies are available in the literature expressing its potentiality for generating randomness and presenting its advantages over commonly used random number generators. Most of the researches in the CA field focus on one-dimensional 3-input CA rules. In this study, we perform an exhaustive search over the set of 5-input CA to find out the rules with high randomness quality. As the measure of quality, the outcomes of NIST Statistical Test Suite are used. Since the set of 5-input CA rules is very large (including more than 4.2 billions of rules), they are eliminated by discarding poor-quality rules before testing. In the literature, generally entropy is used as the elimination criterion, but we preferred mutual information. The main motive behind that choice is to find out a metric for elimination which is directly computed on the truth table of the CA rule instead of the generated sequence. As the test results collected on 3- and 4-input CA indicate, all rules with very good statistical performance have zero mutual information. By exploiting this observation, we limit the set to be tested to the rules with zero mutual information. The reasons and consequences of this choice are discussed. In total, more than 248 millions of rules are tested. Among them, 120 rules show out- standing performance with all attempted neighborhood schemes. Along with these tests, one of them is subjected to a more detailed testing and test results are included. Keywords: Cellular Automata, Pseudorandom Number Generators, Randomness TestsContents Declaration of Authorship ii Abstract iii Öz iv Acknowledgments v List of Figures ix List of Tables x 1 Introduction 1 2 Random Number Sequences 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Theoretical Approaches to Randomness . . . . . . . . . . . . . . . . . . . 5 2.2.1 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 Computability Theory . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Random Number Generator Classification . . . . . . . . . . . . . . . . . . 7 2.3.1 Physical TRNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Non-Physical TRNGs . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.3 Pseudorandom Number Generators . . . . . . . . . . . . . . . . . . 10 2.3.3.1 Generic Design of Pseudorandom Number Generators . . 10 2.3.3.2 Cryptographically Secure Pseudorandom Number Gener- ators . . . . . . . . . . . . . .11 2.3.4 Hybrid Random Number Generators . . . . . . . . . . . . . . . . . 13 2.4 A Comparison between True and Pseudo RNGs . . . . . . . . . . . . . . . 14 2.5 General Requirements on Random Number Sequences . . . . . . . . . . . 14 2.6 Evaluation Criteria of PRNGs . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Statistical Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.8 NIST Test Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8.1 Hypothetical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8.2 Tests in NIST Test Suite . . . . . . . . . . . . . . . . . . . . . . . . 20 2.8.2.1 Frequency Test . . . . . . . . . . . . . . . . . . . . . . . . 20 2.8.2.2 Block Frequency Test . . . . . . . . . . . . . . . . . . . . 20 2.8.2.3 Runs Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8.2.4 Longest Run of Ones in a Block . . . . . . . . . . . . . . 21 2.8.2.5 Binary Matrix Rank Test . . . . . . . . . . . . . . . . . . 21 2.8.2.6 Spectral Test . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.8.2.7 Non-overlapping Template Matching Test . . . . . . . . . 22 2.8.2.8 Overlapping Template Matching Test . . . . . . . . . . . 22 2.8.2.9 Universal Statistical Test . . . . . . . . . . . . . . . . . . 23 2.8.2.10 Linear Complexity Test . . . . . . . . . . . . . . . . . . . 23 2.8.2.11 Serial Test . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.8.2.12 Approximate Entropy Test . . . . . . . . . . . . . . . . . 24 2.8.2.13 Cumulative Sums Test . . . . . . . . . . . . . . . . . . . . 24 2.8.2.14 Random Excursions Test . . . . . . . . . . . . . . . . . . 24 2.8.2.15 Random Excursions Variant Test . . . . . . . . . . . . . . 25 3 Cellular Automata 26 3.1 History of Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . .26 3.1.1 von Neumann’s Work . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Conway’s Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.3 Wolfram’s Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Cellular Automata and the Definitive Parameters . . . . . . . . . . . . . . 31 3.2.1 Lattice Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.2 Cell Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.3 Guiding Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.4 Neighborhood Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 A Formal Definition of Cellular Automata . . . . . . . . . . . . . . . . . . 37 3.4 Elementary Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 Rule Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.6 Producing Randomness via Cellular Automata . . . . . . . . . . . . . . . 42 3.6.1 CA-Based PRNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6.2 Balancedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.3 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.4 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Test Results 47 4.1 Output of a Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Testing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Interpretation of the Test Results . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Rate of success over all trials . . . . . . . . . . . . . . . . . . . . . 49 4.3.2 Distribution of P-values . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 Testing over a big space of functions . . . . . . . . . . . . . . . . . . . . . 50 4.5 Our Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.6 Results and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Change in State Width . . . . . . . . . . . . . . . . . . . . . . . . 53 4.6.2 Change in Neighborhood Scheme . . . . . . . . . . . . . . . . . . . 53 4.6.3 Entropy vs. Statistical Quality . . . . . . . . . . . . . . . . . . . . 58 4.6.4 Mutual Information vs. Statistical Quality . . . . . . . . . . . . . . 60 4.6.5 Entropy vs. Mutual Information . . . . . . . . . . . . . . . . . . . 62 4.6.6 Overall Test Results of 4- and 5-input CA . . . . . . . . . . . . . . 6 4.7 The simplest rule: 1435932310 . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 Conclusion 74 A Test Results for Rule 30 and Rule 45 77 B 120 Rules with their Shortest Boolean Formulae 80 Bibliograph

    Proceedings of the tenth international conference Models in developing mathematics education: September 11 - 17, 2009, Dresden, Saxony, Germany

    Get PDF
    This volume contains the papers presented at the International Conference on “Models in Developing Mathematics Education” held from September 11-17, 2009 at The University of Applied Sciences, Dresden, Germany. The Conference was organized jointly by The University of Applied Sciences and The Mathematics Education into the 21st Century Project - a non-commercial international educational project founded in 1986. The Mathematics Education into the 21st Century Project is dedicated to the improvement of mathematics education world-wide through the publication and dissemination of innovative ideas. Many prominent mathematics educators have supported and contributed to the project, including the late Hans Freudental, Andrejs Dunkels and Hilary Shuard, as well as Bruce Meserve and Marilyn Suydam, Alan Osborne and Margaret Kasten, Mogens Niss, Tibor Nemetz, Ubi D’Ambrosio, Brian Wilson, Tatsuro Miwa, Henry Pollack, Werner Blum, Roberto Baldino, Waclaw Zawadowski, and many others throughout the world. Information on our project and its future work can be found on Our Project Home Page http://math.unipa.it/~grim/21project.htm It has been our pleasure to edit all of the papers for these Proceedings. Not all papers are about research in mathematics education, a number of them report on innovative experiences in the classroom and on new technology. We believe that “mathematics education” is fundamentally a “practicum” and in order to be “successful” all new materials, new ideas and new research must be tested and implemented in the classroom, the real “chalk face” of our discipline, and of our profession as mathematics educators. These Proceedings begin with a Plenary Paper and then the contributions of the Principal Authors in alphabetical name order. We sincerely thank all of the contributors for their time and creative effort. It is clear from the variety and quality of the papers that the conference has attracted many innovative mathematics educators from around the world. These Proceedings will therefore be useful in reviewing past work and looking ahead to the future

    Raising public awareness of mathematics

    Get PDF
    This book arose from the presentations given at the international workshop held in Óbidos, 26–29 September 2010, as a result of a joint initiative of the Centro Internacional de Matemática and the Raising Public Awareness (RPA) committee of the European Mathematical Society (EMS). The objective was to provide a forum for general reflection with an international mix of experts on building the image of mathematics, ten years after the World Mathematical Year 2000 (WMY 2000). Óbidos, a charming town situated one hour by car to the north of Lisbon, Portugal, was also the site of the re-creation in the year 2000 of the international mathematics exhibition “Beyond the Third Dimension” (http://alem3d.obidos.org/en/) and a meeting of the EMS WMY2000 Committee. The opening of the workshop was also a public “mathematical afternoon” organised by the Portuguese Mathematical Society (SPM) in cooperation with the town of Óbidos. At this event mathematical films and lectures to the general public were presented. The first lecture was given by H. Leitão, from the University of Lisbon, on mathematics in the “Age of Discoveries”, and the second one by G.-M. Greuel, the current president of ERCOM (the EMS committee of the European Research Centres on Mathematics), on the topic “Mathematics between Research, Application and Communication”, which text is included in this book.info:eu-repo/semantics/publishedVersio
    corecore