1,012 research outputs found

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Review of control strategies for robotic movement training after neurologic injury

    Get PDF
    There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies

    Imitation Learning of Motion Coordination in Robots:a Dynamical System Approach

    Get PDF
    The ease with which humans coordinate all their limbs is fascinating. Such a simplicity is the result of a complex process of motor coordination, i.e. the ability to resolve the biomechanical redundancy in an efficient and repeatable manner. Coordination enables a wide variety of everyday human activities from filling in a glass with water to pair figure skating. Therefore, it is highly desirable to endow robots with similar skills. Despite the apparent diversity of coordinated motions, all of them share a crucial similarity: these motions are dictated by underlying constraints. The constraints shape the formation of the coordination patterns between the different degrees of freedom. Coordination constraints may take a spatio-temporal form; for instance, during bimanual object reaching or while catching a ball on the fly. They also may relate to the dynamics of the task; for instance, when one applies a specific force profile to carry a load. In this thesis, we develop a framework for teaching coordination skills to robots. Coordination may take different forms, here, we focus on teaching a robot intra-limb and bimanual coordination, as well as coordination with a human during physical collaborative tasks. We use tools from well-established domains of Bayesian semiparametric learning (Gaussian Mixture Models and Regression, Hidden Markov Models), nonlinear dynamics, and adaptive control. We take a biologically inspired approach to robot control. Specifically, we adopt an imitation learning perspective to skill transfer, that offers a seamless and intuitive way of capturing the constraints contained in natural human movements. As the robot is taught from motion data provided by a human teacher, we exploit evidence from human motor control of the temporal evolution of human motions that may be described by dynamical systems. Throughout this thesis, we demonstrate that the dynamical system view on movement formation facilitates coordination control in robots. We explain how our framework for teaching coordination to a robot is built up, starting from intra-limb coordination and control, moving to bimanual coordination, and finally to physical interaction with a human. The dissertation opens with the discussion of learning discrete task-level coordination patterns, such as spatio-temporal constraints emerging between the two arms in bimanual manipulation tasks. The encoding of bimanual constraints occurs at the task level and proceeds through a discretization of the task as sequences of bimanual constraints. Once the constraints are learned, the robot utilizes them to couple the two dynamical systems that generate kinematic trajectories for the hands. Explicit coupling of the dynamical systems ensures accurate reproduction of the learned constraints, and proves to be crucial for successful accomplishment of the task. In the second part of this thesis, we consider learning one-arm control policies. We present an approach to extracting non-linear autonomous dynamical systems from kinematic data of arbitrary point-to-point motions. The proposed method aims to tackle the fundamental questions of learning robot coordination: (i) how to infer a motion representation that captures a multivariate coordination pattern between degrees of freedom and that generalizes this pattern to unseen contexts; (ii) whether the policy learned directly from demonstrations can provide robustness against spatial and temporal perturbations. Finally, we demonstrate that the developed dynamical system approach to coordination may go beyond kinematic motion learning. We consider physical interactions between a robot and a human in situations where they jointly perform manipulation tasks; in particular, the problem of collaborative carrying and positioning of a load. We extend the approach proposed in the second part of this thesis to incorporate haptic information into the learning process. As a result, the robot adapts its kinematic motion plan according to human intentions expressed through the haptic signals. Even after the robot has learned the task model, the human still remains a complex contact environment. To ensure robustness of the robot behavior in the face of the variability inherent to human movements, we wrap the learned task model in an adaptive impedance controller with automatic gain tuning. The techniques, developed in this thesis, have been applied to enable learning of unimanual and bimanual manipulation tasks on the robotics platforms HOAP-3, KATANA, and i-Cub, as well as to endow a pair of simulated robots with the ability to perform a manipulation task in the physical collaboration

    Research on a semiautonomous mobile robot for loosely structured environments focused on transporting mail trolleys

    Get PDF
    In this thesis is presented a novel approach to model, control, and planning the motion of a nonholonomic wheeled mobile robot that applies stable pushes and pulls to a nonholonomic cart (York mail trolley) in a loosely structured environment. The method is based on grasping and ungrasping the nonholonomic cart, as a result, the robot changes its kinematics properties. In consequence, two robot configurations are produced by the task of grasping and ungrasping the load, they are: the single-robot configuration and the robot-trolley configuration. Furthermore, in order to comply with the general planar motion law of rigid bodies and the kinematic constraints imposed by the robot wheels for each configuration, the robot has been provided with two motorized steerable wheels in order to have a flexible platform able to adapt to these restrictions. [Continues.

    Human-robot interaction and computer-vision-based services for autonomous robots

    Get PDF
    L'Aprenentatge per Imitació (IL), o Programació de robots per Demostració (PbD), abasta mètodes pels quals un robot aprèn noves habilitats a través de l'orientació humana i la imitació. La PbD s'inspira en la forma en què els éssers humans aprenen noves habilitats per imitació amb la finalitat de desenvolupar mètodes pels quals les noves tasques es poden transferir als robots. Aquesta tesi està motivada per la pregunta genèrica de "què imitar?", Que es refereix al problema de com extreure les característiques essencials d'una tasca. Amb aquesta finalitat, aquí adoptem la perspectiva del Reconeixement d'Accions (AR) per tal de permetre que el robot decideixi el què cal imitar o inferir en interactuar amb un ésser humà. L'enfoc proposat es basa en un mètode ben conegut que prové del processament del llenguatge natural: és a dir, la bossa de paraules (BoW). Aquest mètode s'aplica a grans bases de dades per tal d'obtenir un model entrenat. Encara que BoW és una tècnica d'aprenentatge de màquines que s'utilitza en diversos camps de la investigació, en la classificació d'accions per a l'aprenentatge en robots està lluny de ser acurada. D'altra banda, se centra en la classificació d'objectes i gestos en lloc d'accions. Per tant, en aquesta tesi es demostra que el mètode és adequat, en escenaris de classificació d'accions, per a la fusió d'informació de diferents fonts o de diferents assajos. Aquesta tesi fa tres contribucions: (1) es proposa un mètode general per fer front al reconeixement d'accions i per tant contribuir a l'aprenentatge per imitació; (2) la metodologia pot aplicar-se a grans bases de dades, que inclouen diferents modes de captura de les accions; i (3) el mètode s'aplica específicament en un projecte internacional d'innovació real anomenat Vinbot.El Aprendizaje por Imitación (IL), o Programación de robots por Demostración (PbD), abarca métodos por los cuales un robot aprende nuevas habilidades a través de la orientación humana y la imitación. La PbD se inspira en la forma en que los seres humanos aprenden nuevas habilidades por imitación con el fin de desarrollar métodos por los cuales las nuevas tareas se pueden transferir a los robots. Esta tesis está motivada por la pregunta genérica de "qué imitar?", que se refiere al problema de cómo extraer las características esenciales de una tarea. Con este fin, aquí adoptamos la perspectiva del Reconocimiento de Acciones (AR) con el fin de permitir que el robot decida lo que hay que imitar o inferir al interactuar con un ser humano. El enfoque propuesto se basa en un método bien conocido que proviene del procesamiento del lenguaje natural: es decir, la bolsa de palabras (BoW). Este método se aplica a grandes bases de datos con el fin de obtener un modelo entrenado. Aunque BoW es una técnica de aprendizaje de máquinas que se utiliza en diversos campos de la investigación, en la clasificación de acciones para el aprendizaje en robots está lejos de ser acurada. Además, se centra en la clasificación de objetos y gestos en lugar de acciones. Por lo tanto, en esta tesis se demuestra que el método es adecuado, en escenarios de clasificación de acciones, para la fusión de información de diferentes fuentes o de diferentes ensayos. Esta tesis hace tres contribuciones: (1) se propone un método general para hacer frente al reconocimiento de acciones y por lo tanto contribuir al aprendizaje por imitación; (2) la metodología puede aplicarse a grandes bases de datos, que incluyen diferentes modos de captura de las acciones; y (3) el método se aplica específicamente en un proyecto internacional de innovación real llamado Vinbot.Imitation Learning (IL), or robot Programming by Demonstration (PbD), covers methods by which a robot learns new skills through human guidance and imitation. PbD takes its inspiration from the way humans learn new skills by imitation in order to develop methods by which new tasks can be transmitted to robots. This thesis is motivated by the generic question of “what to imitate?” which concerns the problem of how to extract the essential features of a task. To this end, here we adopt Action Recognition (AR) perspective in order to allow the robot to decide what has to be imitated or inferred when interacting with a human kind. The proposed approach is based on a well-known method from natural language processing: namely, Bag of Words (BoW). This method is applied to large databases in order to obtain a trained model. Although BoW is a machine learning technique that is used in various fields of research, in action classification for robot learning it is far from accurate. Moreover, it focuses on the classification of objects and gestures rather than actions. Thus, in this thesis we show that the method is suitable in action classification scenarios for merging information from different sources or different trials. This thesis makes three contributions: (1) it proposes a general method for dealing with action recognition and thus to contribute to imitation learning; (2) the methodology can be applied to large databases which include different modes of action captures; and (3) the method is applied specifically in a real international innovation project called Vinbot

    A Posture Sequence Learning System for an Anthropomorphic Robotic Hand

    Get PDF
    The paper presents a cognitive architecture for posture learning of an anthropomorphic robotic hand. Our approach is aimed to allow the robotic system to perform complex perceptual operations, to interact with a human user and to integrate the perceptions by a cognitive representation of the scene and the observed actions. The anthropomorphic robotic hand imitates the gestures acquired by the vision system in order to learn meaningful movements, to build its knowledge by different conceptual spaces and to perform complex interaction with the human operator

    Applications of fractional calculus in electrical and computer engineering

    Get PDF
    Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of several systems. This article illustrates several applications of fractional calculus in science and engineering. It has been recognized the advantageous use of this mathematical tool in the modeling and control of many dynamical systems. In this perspective, this paper investigates the use of FC in the fields of controller tuning, electrical systems, digital circuit synthesis, evolutionary computing, redundant robots, legged robots, robotic manipulators, nonlinear friction and financial modeling.N/

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints

    Remote control and motion coordination of mobile robots

    Get PDF
    As robots destined for personal and professional applications advance towards becoming part of our daily lives, the importance and complexity of the control algorithms which regulate them should not be underestimated. This thesis is related to two fields within robotics which are of major importance in this paradigm shift; namely, telerobotics and cooperative robotics. On the one hand, telerobotic systems support remote or dangerous tasks, whereas, on the other hand, the use of cooperative robotic systems supports distributed tasks and has several advantages with respect to the use of single-robot systems. The use of robotic systems in remote tasks implies in many cases the physical separation of the controller and the robot. This separation is advantageous when carrying out a variety of remote or hazardous tasks, but at the same time constitutes one of the main drawbacks of this type of robotic systems. Namely, as information is being relayed from the controller to the robot and back over the communication network, a time-delay unavoidably appears in the overall control loop. Hence, controller designs which guarantee the stability and performance of the robot even in the presence of the aforementioned time-delay become necessary in order to ensure a safe and reliable completion of the assigned tasks. On the other hand, using a group of robots to carry out a certain assignment, as compared to a single robot, provides several advantages such as an increased flexibility and the ability to complete distributed or more complex tasks. In order to successfully complete their collective task, the robots in the group generally need to coordinate their behavior by mutually exchanging information. When this information exchange takes place over a delay-inducing communication network, the consequences of the resulting time-delay must be taken into account. As a result, it is of great importance to design controllers which allow the group of robots to work together and complete their task in spite of the time-delay affecting their information exchange. The two control problems explained previously are addressed in this thesis. Firstly, the control of wheeled mobile robots over a delay-inducing communication network is considered by studying the remote tracking control problem for a unicycle-type mobile robot with communication delays. The most important issue to consider is that the communication delay in the control loop most probably compromises the performance and stability of the robot. In order to tackle this problem, a state estimator with a predictor-like structure is proposed. The state estimator is based on the notion of anticipating synchronization and, when acting in conjunction with a tracking control law, the resulting control strategy stabilizes the system and mitigates the negative effects of the time-delay. By exploiting existing results on nonlinear cascaded systems with time-delay, the local uniform asymptotic stability of the closed-loop tracking error dynamics is guaranteed up to a maximum admissible time-delay. Ultimately, explicit expressions which illustrate the relationship between the allowable time-delay and the control parameters of the robot are provided. Secondly, the coordination of a group of wheeled mobile robots over a delayinducing communication network is considered by studying the remote motion coordination problem for a group of unicycle-type mobile robots with a delayed information exchange between the robots. Specifically, master-slave and mutual motion coordination are considered. A controller design which allows the robots to maintain motion coordination even in the presence of a time-delay is proposed and the ensuing global stability analysis provides expressions which relate the control parameters of the robot and the allowable time-delay. The thesis places equal emphasis on theoretical developments and experimental results. In order to do so, the proposed control strategies are experimentally validated using the Internet as the communication network and multi-robot platforms located in Eindhoven, The Netherlands and Tokyo, Japan. To summarize, this thesis addresses two related control problems. On the one hand, we consider the tracking control of a wheeled mobile robot over a communication network which induces a time-delay. On the other hand, we focus on the motion coordination of a group of these robots under the consideration that the information exchange between the robots takes place over a delay-inducing communication network
    corecore