446 research outputs found

    Dynamics of Unperturbed and Noisy Generalized Boolean Networks

    Full text link
    For years, we have been building models of gene regulatory networks, where recent advances in molecular biology shed some light on new structural and dynamical properties of such highly complex systems. In this work, we propose a novel timing of updates in Random and Scale-Free Boolean Networks, inspired by recent findings in molecular biology. This update sequence is neither fully synchronous nor asynchronous, but rather takes into account the sequence in which genes affect each other. We have used both Kauffman's original model and Aldana's extension, which takes into account the structural properties about known parts of actual GRNs, where the degree distribution is right-skewed and long-tailed. The computer simulations of the dynamics of the new model compare favorably to the original ones and show biologically plausible results both in terms of attractors number and length. We have complemented this study with a complete analysis of our systems' stability under transient perturbations, which is one of biological networks defining attribute. Results are encouraging, as our model shows comparable and usually even better behavior than preceding ones without loosing Boolean networks attractive simplicity.Comment: 29 pages, publishe

    Dynamical properties of a gene-protein model

    Get PDF
    A major limitation of the classical random Boolean network model of gene regulatory networks is its synchronous updating, which implies that all the proteins decay at the same rate. Here a model is discussed, where the network is composed of two different sets of nodes, labelled G and P with reference to “genes” and “proteins”. Each gene corresponds to a protein (the one it codes for), while several proteins can simultaneously affect the expression of a gene. Both kinds of nodes take Boolean values. If we look at the genes only, it is like adding some memory terms, so the new state of the gene subnetwork network does no longer depend upon its previous state only. In general, these terms tend to make the dynamics of the network more ordered than that of the corresponding memoryless network. The analysis is focused here mostly on dynamical critical states. It has been shown elsewhere that the usual way of computing the Derrida parameter, starting from purely random initial conditions, can be misleading in strongly non-ergodic systems. So here the effects of perturbations on both genes’ and proteins’ levels is analysed, using both the canonical Derrida procedure and an “extended” one. The results are discussed. Moreover, the stability of attractors is also analysed, measured by counting the fraction of perturbations where the system eventually falls back onto the initial attractor

    Identifying Critical States through the Relevance Index

    Get PDF
    The identification of critical states is a major task in complex systems, and the availability of measures to detect such conditions is of utmost importance. In general, criticality refers to the existence of two qualitatively different behaviors that the same system can exhibit, depending on the values of some parameters. In this paper, we show that the relevance index may be effectively used to identify critical states in complex systems. The relevance index was originally developed to identify relevant sets of variables in dynamical systems, but in this paper, we show that it is also able to capture features of criticality. The index is applied to two prominent examples showing slightly different meanings of criticality, namely the Ising model and random Boolean networks. Results show that this index is maximized at critical states and is robust with respect to system size and sampling effort. It can therefore be used to detect criticality

    Evolving Sensitivity Balances Boolean Networks

    Get PDF
    We investigate the sensitivity of Boolean Networks (BNs) to mutations. We are interested in Boolean Networks as a model of Gene Regulatory Networks (GRNs). We adopt Ribeiro and Kauffman’s Ergodic Set and use it to study the long term dynamics of a BN. We define the sensitivity of a BN to be the mean change in its Ergodic Set structure under all possible loss of interaction mutations. Insilico experiments were used to selectively evolve BNs for sensitivity to losing interactions. We find that maximum sensitivity was often achievable and resulted in the BNs becoming topologically balanced, i.e. they evolve towards network structures in which they have a similar number of inhibitory and excitatory interactions. In terms of the dynamics, the dominant sensitivity strategy that evolved was to build BNs with Ergodic Sets dominated by a single long limit cycle which is easily destabilised by mutations. We discuss the relevance of our findings in the context of Stem Cell Differentiation and propose a relationship between pluripotent stem cells and our evolved sensitive networks

    On the dynamical properties of a model of cell differentiation

    Get PDF
    One of the major challenges in complex systems biology is that of providing a general theoretical framework to describe the phenomena involved in cell differentiation, i.e., the process whereby stem cells, which can develop into different types, become progressively more specialized. The aim of this study is to briefly review a dynamical model of cell differentiation which is able to cover a broad spectrum of experimentally observed phenomena and to present some novel results
    • …
    corecore