12,335 research outputs found

    An Overview on Evaluation of E-Learning/Training Response Time Considering Artificial Neural Networks Modeling

    Get PDF
    The objective of this piece of research is to interpret and investigate systematically an observed brain functional phenomenon which associated with proceeding of e-learning processes. More specifically, this work addresses an interesting and challenging educational issue concerned with dynamical evaluation of e-learning performance considering convergence (response) time. That's based on an interdisciplinary recent approach named as Artificial Neural Networks (ANNs) modeling. Which incorporate Nero-physiology, educational psychology, cognitive, and learning sciences. Herein, adopted application of neural modeling results in realistic dynamical measurements of e-learners' response time performance parameter. Initially, it considers time evolution of learners' experienced acquired intelligence level during proceeding of learning / training process. In the context of neurobiological details, the state of synaptic connectivity pattern (weight vector) inside e-learner's brain-at any time instant-supposed to be presented as timely varying dependent parameter. The varying modified synaptic state expected to lead to obtain stored experience spontaneously as learner's output (answer). Obviously, obtained responsive learner's output is a resulting action to any arbitrary external input stimulus (question). So, as the initial brain state of synaptic connectivity pattern (vector) considered as pre-intelligence level measured parameter. Actually, obtained e-learner’s answer is compatibly consistent with modified state of internal / stored experienced level of intelligence. In other words, dynamical changes of brain synaptic pattern (weight vector) modify adaptively convergence time of learning processes, so as to reach desired answer. Additionally, introduced research work is motivated by some obtained results for performance evaluation of some neural system models concerned with convergence time of learning process. Moreover, this paper considers interpretation of interrelations among some other interesting results obtained by a set of previously published educational models. The interpretational evaluation and analysis for introduced models results in some applicable studies at educational field as well as medically promising treatment of learning disabilities. Finally, an interesting comparative analogy between performances of ANNs modeling versus Ant Colony System (ACS) optimization presented at the end of this paper

    Memristor models for machine learning

    Get PDF
    In the quest for alternatives to traditional CMOS, it is being suggested that digital computing efficiency and power can be improved by matching the precision to the application. Many applications do not need the high precision that is being used today. In particular, large gains in area- and power efficiency could be achieved by dedicated analog realizations of approximate computing engines. In this work, we explore the use of memristor networks for analog approximate computation, based on a machine learning framework called reservoir computing. Most experimental investigations on the dynamics of memristors focus on their nonvolatile behavior. Hence, the volatility that is present in the developed technologies is usually unwanted and it is not included in simulation models. In contrast, in reservoir computing, volatility is not only desirable but necessary. Therefore, in this work, we propose two different ways to incorporate it into memristor simulation models. The first is an extension of Strukov's model and the second is an equivalent Wiener model approximation. We analyze and compare the dynamical properties of these models and discuss their implications for the memory and the nonlinear processing capacity of memristor networks. Our results indicate that device variability, increasingly causing problems in traditional computer design, is an asset in the context of reservoir computing. We conclude that, although both models could lead to useful memristor based reservoir computing systems, their computational performance will differ. Therefore, experimental modeling research is required for the development of accurate volatile memristor models.Comment: 4 figures, no tables. Submitted to neural computatio

    Intelligent control based on fuzzy logic and neural net theory

    Get PDF
    In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment

    A new class of multiscale lattice cell (MLC) models for spatio-temporal evolutionary image representation

    Get PDF
    Spatio-temporal evolutionary (STE) images are a class of complex dynamical systems that evolve over both space and time. With increased interest in the investigation of nonlinear complex phenomena, especially spatio-temporal behaviour governed by evolutionary laws that are dependent on both spatial and temporal dimensions, there has been an increased need to investigate model identification methods for this class of complex systems. Compared with pure temporal processes, the identification of spatio-temporal models from observed images is much more difficult and quite challenging. Starting with an assumption that there is no apriori information about the true model but only observed data are available, this study introduces a new class of multiscale lattice cell (MLC) models to represent the rules of the associated spatio-temporal evolutionary system. An application to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, is investigated to demonstrate the new modelling framework

    Generalised additive multiscale wavelet models constructed using particle swarm optimisation and mutual information for spatio-temporal evolutionary system representation

    Get PDF
    A new class of generalised additive multiscale wavelet models (GAMWMs) is introduced for high dimensional spatio-temporal evolutionary (STE) system identification. A novel two-stage hybrid learning scheme is developed for constructing such an additive wavelet model. In the first stage, a new orthogonal projection pursuit (OPP) method, implemented using a particle swarm optimisation(PSO) algorithm, is proposed for successively augmenting an initial coarse wavelet model, where relevant parameters of the associated wavelets are optimised using a particle swarm optimiser. The resultant network model, obtained in the first stage, may however be a redundant model. In the second stage, a forward orthogonal regression (FOR) algorithm, implemented using a mutual information method, is then applied to refine and improve the initially constructed wavelet model. The proposed two-stage hybrid method can generally produce a parsimonious wavelet model, where a ranked list of wavelet functions, according to the capability of each wavelet to represent the total variance in the desired system output signal is produced. The proposed new modelling framework is applied to real observed images, relative to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, and the associated identification results show that the new modelling framework is applicable and effective for handling high dimensional identification problems of spatio-temporal evolution sytems
    • …
    corecore