526 research outputs found

    SATURATED AND ASYMMETRIC SATURATED IMPULSIVE CONTROL SYNCHRONIZATION OF COUPLED DELAYED INERTIAL NEURAL NETWORKS WITH TIME-VARYING DELAYS

    Get PDF
    This paper considers control systems with impulses that are saturated and asymmetrically saturated which are used to examine the synchronization of inertial neural networks (INNs) with time-varying delay and coupling delays. Under the theoretical discussions, mixed delays, such as transmission delay and coupling delay are presented for inertial neural networks. The addressed INNs are transformed into first order differential equations utilizing variable transformation on INNs and then certain adequate conditions are derived for the exponential synchronization of the addressed model by substituting saturation nonlinearity with a dead-zone function. In addition, an asymmetric saturated impulsive control approach is given to realize the exponential synchronization of addressed INNs in the leader-following synchronization pattern. Finally, simulation results are used to validate the theoretical research findings

    Synchronization of Complex-Valued Dynamical Networks

    Get PDF
    Dynamical networks (DNs) have been broadly applied to describe natural and human systems consisting of a large number of interactive individuals. Common examples include Internet, food webs, social networks, neural networks, etc. One of the crucial and significant collective behaviors of DNs is known as synchronization. In reality, synchronization phenomena may occur either inside a network or between two or more networks, which are called “inner synchronization” and “outer synchronization”, respectively. On the other hand, many real systems are more suitably characterized by complex-valued dynamical systems, such as quantum systems, complex Lorenz system, and complex-valued neural networks. The main focus of this thesis is on synchronization of complex-valued dynamical networks (CVDNs). In this thesis, we firstly design a delay-dependent pinning impulsive controller to study synchronization of time-delay CVDNs. By taking advantage of the Lyapunov function in the complex field, some delay-independent synchronization criteria of CVDNs are established, which generalizes some existing synchronization results. Then, by employing the Lyapunov functional in the complex field, several delay-dependent sufficient conditions on synchronization of CVDNs with various sizes of delays are constructed. Moreover, we study synchronization of CVDNs with time-varying delays under distributed impulsive controllers. By taking advantage of time-varying Lyapunov function/ functional in the complex domain, several synchronization criteria for CVDNs with time-varying delays are derived in terms of complex-valued linear matrix inequalities (LMIs). Then, we propose a memory-based event-triggered impulsive control (ETIC) scheme with three levels of events in the complex field to investigate the synchronization problem of CVDNs with both discrete and distributed time delays, and we further consider an event-triggered pinning impulsive control (ETPIC) scheme combining the proposed ETIC and a pinning algorithm to study synchronization of time-delay CVDNs. Results show that the proposed ETIC scheme and ETPIC scheme can effectively synchronize CVDNs with the desired trajectory. Secondly, we study generalized outer synchronization of drive-response time-delayed CVDNs via hybrid control. A hybrid controller is proposed in the complex domain to construct response complex-valued networks. Some generalized outer synchronization criteria for drive-response CVDNs are established, which extend the existing generalized outer synchronization results to the complex field. Thirdly, we study the average-consensus problem of potential complex-valued multi-agent systems. A complex-variable hybrid consensus protocol is proposed, and time delays are taken into account in both the continuous-time protocol and the discrete-time protocol. Delay-dependent sufficient conditions are established to guarantee the proposed complex-variable hybrid consensus protocol can solve the average-consensus problem. Lastly, as a practical application for complex-valued networked systems, the synchronization problem of master-slave complex-valued neural networks (CVNNs) is studied via hybrid control and delayed ETPIC, respectively. We also investigate the state estimation problem of CVNNs by designing the adaptive impulsive observer in the complex field

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    An improved stability criterion for discrete-time time-delayed Lur’e systemwith sector-bounded nonlinearities

    Get PDF
    The absolute stability problem of discrete-time time-delayed Lur\u27e systems with sector bounded nonlinearities is investigated in this paper. Firstly, a modified Lyapunov-Krasovskii functional (LKF) is designed with augmenting additional double summation terms, which complements more coupling information between the delay intervals and other system state variables than some previous LKFs. Secondly, some improved delay-dependent absolute stability criteria based on linear matrix inequality form (LMI) are proposed via the modified LKF and the relaxed free-matrix-based summation inequality technique application. The stability criteria are less conservative than some results previously proposed. The reduction of the conservatism mainly relies on the full use of the relaxed summation inequality technique based on the modified LKF. Finally, two common numerical examples are presented to show the effectiveness of the proposed approach

    Abstract book

    Get PDF
    Welcome at the International Conference on Differential and Difference Equations & Applications 2015. The main aim of this conference is to promote, encourage, cooperate, and bring together researchers in the fields of differential and difference equations. All areas of differential & difference equations will be represented with special emphasis on applications. It will be mathematically enriching and socially exciting event. List of registered participants consists of 169 persons from 45 countries. The five-day scientific program runs from May 18 (Monday) till May 22, 2015 (Friday). It consists of invited lectures (plenary lectures and invited lectures in sections) and contributed talks in the following areas: Ordinary differential equations, Partial differential equations, Numerical methods and applications, other topics

    Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations

    Get PDF
    This article, we explore the asymptotic stability and asymptotic synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous neuron activation functions (FCGNNDDs). First, under the framework of Filippov theory and differ- ential inclusion theoretical analysis, the global existence of Filippov solution for FCGNNDDs is studied by means of the given growth condition. Second, by virtue of suitable Lyapunov functional, Young inequality and comparison theorem for fractional order delayed linear system, some global asymptotic stability conditions for such system is derived by limiting discontinuous neuron activations. Third, the global asymptotic synchronization condition for FCGNNDDs is obtained based on the pinning control. At last, two numerical simula- tions are given to verify the theoretical findings.N/

    Impulsive Control of Dynamical Networks

    Get PDF
    Dynamical networks (DNs) consist of a large set of interconnected nodes with each node being a fundamental unit with detailed contents. A great number of natural and man-made networks such as social networks, food networks, neural networks, WorldWideWeb, electrical power grid, etc., can be effectively modeled by DNs. The main focus of the present thesis is on delay-dependent impulsive control of DNs. To study the impulsive control problem of DNs, we firstly construct stability results for general nonlinear time-delay systems with delayed impulses by using the method of Lyapunov functionals and Razumikhin technique. Secondly, we study the consensus problem of multi-agent systems with both fixed and switching topologies. A hybrid consensus protocol is proposed to take into consideration of continuous-time communications among agents and delayed instant information exchanges on a sequence of discrete times. Then, a novel hybrid consensus protocol with dynamically changing interaction topologies is designed to take the time-delay into account in both the continuous-time communication among agents and the instant information exchange at discrete moments. We also study the consensus problem of networked multi-agent systems. Distributed delays are considered in both the agent dynamics and the proposed impulsive consensus protocols. Lastly, stabilization and synchronization problems of DNs under pinning impulsive control are studied. A pinning algorithm is incorporated with the impulsive control method. We propose a delay-dependent pinning impulsive controller to investigate the synchronization of linear delay-free DNs on time scales. Then, we apply the pinning impulsive controller proposed for the delay-free networks to stabilize time-delay DNs. Results show that the delay-dependent pinning impulsive controller can successfully stabilize and synchronize DNs with/without time-delay. Moreover, we design a type of pinning impulsive controllers that relies only on the network states at history moments (not on the states at each impulsive instant). Sufficient conditions on stabilization of time-delay networks are obtained, and results show that the proposed pinning impulsive controller can effectively stabilize the network even though only time-delay states are available to the pinning controller at each impulsive instant. We further consider the pinning impulsive controllers with both discrete and distributed time-delay effects to synchronize the drive and response systems modeled by globally Lipschitz time-delay systems. As an extension study of pinning impulsive control approach, we investigate the synchronization problem of systems and networks governed by PDEs

    Synchronization in output-coupled temporal Boolean networks

    Get PDF
    This paper presents an analytical study of synchronization in an array of output-coupled temporal Boolean networks. A temporal Boolean network (TBN) is a logical dynamic system developed to model Boolean networks with regulatory delays. Both state delay and output delay are considered, and these two delays are assumed to be different. By referring to the algebraic representations of logical dynamics and using the semi-tensor product of matrices, the output-coupled TBNs are firstly converted into a discrete-time algebraic evolution system, and then the relationship between the states of coupled TBNs and the initial state sequence is obtained. Then, some necessary and sufficient conditions are derived for the synchronization of an array of TBNs with an arbitrary given initial state sequence. Two numerical examples including one epigenetic model are finally given to illustrate the obtained results
    corecore