260,229 research outputs found

    Multifractal properties of return time statistics

    Full text link
    Fluctuations in the return time statistics of a dynamical system can be described by a new spectrum of dimensions. Comparison with the usual multifractal analysis of measures is presented, and difference between the two corresponding sets of dimensions is established. Theoretical analysis and numerical examples of dynamical systems in the class of Iterated Functions are presented.Comment: 4 pages, 3 figure

    A class of robust numerical methods for solving dynamical systems with multiple time scales

    Get PDF
    In this paper, we develop a class of robust numerical methods for solving dynamical systems with multiple time scales. We first represent the solution of a multiscale dynamical system as a transformation of a slowly varying solution. Then, under the scale separation assumption, we provide a systematic way to construct the transformation map and derive the dynamic equation for the slowly varying solution. We also provide the convergence analysis of the proposed method. Finally, we present several numerical examples, including ODE system with three and four separated time scales to demonstrate the accuracy and efficiency of the proposed method. Numerical results verify that our method is robust in solving ODE systems with multiple time scale, where the time step does not depend on the multiscale parameters

    On numerical approaches to the analysis of topology of the phase space for dynamical integrability

    Full text link
    In this paper we consider the possibility to use numerical simulations for a computer assisted analysis of integrability of dynamical systems. We formulate a rather general method of recovering the obstruction to integrability for the systems with a small number of degrees of freedom. We generalize this method using the results of KAM theory and stochastic approaches to the families of parameter depending systems. This permits the localization of possible integrability regions in the parameter space. We give some examples of application of this approach to dynamical systems having mechanical origin.Comment: 9 figures, version accepted to CS

    Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics

    Get PDF
    This paper shows the influence of piecewise-linear approximation on the global dynamics associated with autonomous third-order dynamical systems with the quadratic vector fields. The novel method for optimal nonlinear function approximation preserving the system behavior is proposed and experimentally verified. This approach is based on the calculation of the state attractor metric dimension inside a stochastic optimization routine. The approximated systems are compared to the original by means of the numerical integration. Real electronic circuits representing individual dynamical systems are derived using classical as well as integrator-based synthesis and verified by time-domain analysis in Orcad Pspice simulator. The universality of the proposed method is briefly discussed, especially from the viewpoint of the higher-order dynamical systems. Future topics and perspectives are also provide

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte
    • …
    corecore