592 research outputs found

    Stretching and folding versus cutting and shuffling: An illustrated perspective on mixing and deformations of continua

    Full text link
    We compare and contrast two types of deformations inspired by mixing applications -- one from the mixing of fluids (stretching and folding), the other from the mixing of granular matter (cutting and shuffling). The connection between mechanics and dynamical systems is discussed in the context of the kinematics of deformation, emphasizing the equivalence between stretches and Lyapunov exponents. The stretching and folding motion exemplified by the baker's map is shown to give rise to a dynamical system with a positive Lyapunov exponent, the hallmark of chaotic mixing. On the other hand, cutting and shuffling does not stretch. When an interval exchange transformation is used as the basis for cutting and shuffling, we establish that all of the map's Lyapunov exponents are zero. Mixing, as quantified by the interfacial area per unit volume, is shown to be exponentially fast when there is stretching and folding, but linear when there is only cutting and shuffling. We also discuss how a simple computational approach can discern stretching in discrete data.Comment: REVTeX 4.1, 9 pages, 3 figures; v2 corrects some misprints. The following article appeared in the American Journal of Physics and may be found at http://ajp.aapt.org/resource/1/ajpias/v79/i4/p359_s1 . Copyright 2011 American Association of Physics Teachers. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the AAP

    Does a billiard orbit determine its (polygonal) table?

    Full text link
    We introduce a new equivalence relation on the set of all polygonal billiards. We say that two billiards (or polygons) are order equivalent if each of the billiards has an orbit whose footpoints are dense in the boundary and the two sequences of footpoints of these orbits have the same combinatorial order. We study this equivalence relation with additional regularity conditions on the orbit

    Lorenz, G\"{o}del and Penrose: New perspectives on determinism and causality in fundamental physics

    Full text link
    Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of meteorologist Ed Lorenz's work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz's fractal invariant set relate space-time calculus to deep areas of mathematics such as G\"{o}del's Incompleteness Theorem. These properties, combined with some recent developments in theoretical and observational cosmology, motivate what is referred to as the `cosmological invariant set postulate': that the universe UU can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set IUI_U in its state space. Symbolic representations of IUI_U are constructed explicitly based on permutation representations of quaternions. The resulting `invariant set theory' provides some new perspectives on determinism and causality in fundamental physics. For example, whilst the cosmological invariant set appears to have a rich enough structure to allow a description of quantum probability, its measure-zero character ensures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physical basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. Consistent with Penrose's suggestion of a deterministic but non-computable theory of fundamental physics, a `gravitational theory of the quantum' is proposed based on the geometry of IUI_U, with potential observational consequences for the dark universe.Comment: This manuscript has been accepted for publication in Contemporary Physics and is based on the author's 9th Dennis Sciama Lecture, given in Oxford and Triest

    The Dynamics of Twisted Tent Maps

    Get PDF
    This paper is a study of the dynamics of a new family of maps from the complex plane to itself, which we call twisted tent maps. A twisted tent map is a complex generalization of a real tent map. The action of this map can be visualized as the complex scaling of the plane followed by folding the plane once. Most of the time, scaling by a complex number will "twist" the plane, hence the name. The "folding" both breaks analyticity (and even smoothness) and leads to interesting dynamics ranging from easily understood and highly geometric behavior to chaotic behavior and fractals.Comment: 87 pages. This is my Ph.D. thesis from IUPU

    Tiling billiards and Dynnikov's helicoid

    Full text link
    Here are two problems. First, understand the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describe the topology of connected components of plane sections of a centrally symmetric subsurface S⊂T3S \subset \mathbb{T}^3 of genus 33. In this note we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov's problem in higher genus seems promising, as we show in the end of this note.Comment: 18 pages, 5 figure
    • …
    corecore