1,730 research outputs found

    Learning the dynamics and time-recursive boundary detection of deformable objects

    Get PDF
    We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as non-parametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although the paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object

    Segmentation of the evolving left ventricle by learning the dynamics

    Get PDF
    We propose a method for recursive segmentation of the left ventricle (LV) across a temporal sequence of magnetic resonance (MR) images. The approach involves a technique for learning the LV boundary dynamics together with a particle-based inference algorithm on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and boundary estimation involves incorporating curve evolution into state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. We assess and demonstrate the effectiveness of the proposed framework on a large data set of breath-hold cardiac MR image sequences

    A Generic Framework for Tracking Using Particle Filter With Dynamic Shape Prior

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.894244Tracking deforming objects involves estimating the global motion of the object and its local deformations as functions of time. Tracking algorithms using Kalman filters or particle filters (PFs) have been proposed for tracking such objects, but these have limitations due to the lack of dynamic shape information. In this paper, we propose a novel method based on employing a locally linear embedding in order to incorporate dynamic shape information into the particle filtering framework for tracking highly deformable objects in the presence of noise and clutter. The PF also models image statistics such as mean and variance of the given data which can be useful in obtaining proper separation of object and backgroun

    Active Contour-Based Visual Tracking by Integrating Colors, Shapes, and Motions Using Level Sets

    Get PDF
    Using a camera,the visual object tracking is one of the most important process in searching the spot of moving object over the time. In the case of the object moves fast relative to the frame rate,the visual object tracking is difficult task. The active contour evolution algorithm which is used for the tracking of object in a given frame of an image sequence. Active contour based visual object tracking using the level sets is proposed which does not consider the camera either stationary or moving. We present a framework for active contour-based visual object tracking using the level sets. The main components of our framework consist of the contour-based tracking initialization, colour-based contour evolution, the adaptive shape-based contour evolution for the non-periodic motions, the dynamic shape-based contour evolution for the periodic motions and handling of the abrupt motions. For the contour-based tracking initialization, we use an optical flow-based algorithm for the automatically initializing contours at the first frame. In the color-based contour evolution, we use Markov random field theory to measure correlations between values of the neighboring pixels for the posterior probability estimation.In the adaptive shape-based contour evolution, we combined the global shape information and the local color information to hierarchically develop gradually the contour, and a flexible shape updating model is made. In the dynamic shape based contour evolution, a shape mode transition matrix is gain to characterize the temporal correlations of the object shapes. In the handling of abrupt motions, particle swarm optimization (PSO) is used to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame. DOI: 10.17762/ijritcc2321-8169.15013

    08291 Abstracts Collection -- Statistical and Geometrical Approaches to Visual Motion Analysis

    Get PDF
    From 13.07.2008 to 18.07.2008, the Dagstuhl Seminar 08291 ``Statistical and Geometrical Approaches to Visual Motion Analysis\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis

    Get PDF
    Factor analysis aims to determine latent factors, or traits, which summarize a given data set. Inter-battery factor analysis extends this notion to multiple views of the data. In this paper we show how a nonlinear, nonparametric version of these models can be recovered through the Gaussian process latent variable model. This gives us a flexible formalism for multi-view learning where the latent variables can be used both for exploratory purposes and for learning representations that enable efficient inference for ambiguous estimation tasks. Learning is performed in a Bayesian manner through the formulation of a variational compression scheme which gives a rigorous lower bound on the log likelihood. Our Bayesian framework provides strong regularization during training, allowing the structure of the latent space to be determined efficiently and automatically. We demonstrate this by producing the first (to our knowledge) published results of learning from dozens of views, even when data is scarce. We further show experimental results on several different types of multi-view data sets and for different kinds of tasks, including exploratory data analysis, generation, ambiguity modelling through latent priors and classification.Comment: 49 pages including appendi

    A Variational Framework for the Simultaneous Segmentation and Object Behavior Classification of Image Sequences

    Get PDF
    In this paper, we advance the state of the art in variational image segmentation through the fusion of bottom-up segmentation and top-down classification of object behavior over an image sequence. Such an approach is beneficial for both tasks and is carried out through a joint optimization, which enables the two tasks to cooperate, such that knowledge relevant to each can aid in the resolution of the other, thereby enhancing the final result. In particular, classification offers dynamic probabilistic priors to guide segmentation, while segmentation supplies its results to classification, ensuring that they are consistent with prior knowledge. The prior models are learned from training data and updated dynamically, based on segmentations of earlier images in the sequence. We demonstrate the potential of our approach in a hand gesture recognition application, where the combined use of segmentation and classification improves robustness in the presence of occlusion and background complexity

    Dynamical models and machine learning for supervised segmentation

    Get PDF
    This thesis is concerned with the problem of how to outline regions of interest in medical images, when the boundaries are weak or ambiguous and the region shapes are irregular. The focus on machine learning and interactivity leads to a common theme of the need to balance conflicting requirements. First, any machine learning method must strike a balance between how much it can learn and how well it generalises. Second, interactive methods must balance minimal user demand with maximal user control. To address the problem of weak boundaries,methods of supervised texture classification are investigated that do not use explicit texture features. These methods enable prior knowledge about the image to benefit any segmentation framework. A chosen dynamic contour model, based on probabilistic boundary tracking, combines these image priors with efficient modes of interaction. We show the benefits of the texture classifiers over intensity and gradient-based image models, in both classification and boundary extraction. To address the problem of irregular region shape, we devise a new type of statistical shape model (SSM) that does not use explicit boundary features or assume high-level similarity between region shapes. First, the models are used for shape discrimination, to constrain any segmentation framework by way of regularisation. Second, the SSMs are used for shape generation, allowing probabilistic segmentation frameworks to draw shapes from a prior distribution. The generative models also include novel methods to constrain shape generation according to information from both the image and user interactions. The shape models are first evaluated in terms of discrimination capability, and shown to out-perform other shape descriptors. Experiments also show that the shape models can benefit a standard type of segmentation algorithm by providing shape regularisers. We finally show how to exploit the shape models in supervised segmentation frameworks, and evaluate their benefits in user trials

    Cooperative Object Segmentation and Behavior Inference inImage Sequences

    Get PDF
    In this paper, we propose a general framework for fusing bottom-up segmentation with top-down object behavior inference over an image sequence. This approach is beneficial for both tasks, since it enables them to cooperate so that knowledge relevant to each can aid in the resolution of the other, thus enhancing the final result. In particular, the behavior inference process offers dynamic probabilistic priors to guide segmentation. At the same time, segmentation supplies its results to the inference process, ensuring that they are consistent both with prior knowledge and with new image information. The prior models are learned from training data and they adapt dynamically, based on newly analyzed images. We demonstrate the effectiveness of our framework via particular implementations that we have employed in the resolution of two hand gesture recognition applications. Our experimental results illustrate the robustness of our joint approach to segmentation and behavior inference in challenging conditions involving complex backgrounds and occlusions of the target objec
    corecore