2,419 research outputs found

    Dynamical Properties of a Two-gene Network with Hysteresis

    Get PDF
    A mathematical model for a two-gene regulatory network is derived and several of their properties analyzed. Due to the presence of mixed continuous/discrete dynamics and hysteresis, we employ a hybrid systems model to capture the dynamics of the system. The proposed model incorporates binary hysteresis with different thresholds capturing the interaction between the genes. We analyze properties of the solutions and asymptotic stability of equilibria in the system as a function of its parameters. Our analysis reveals the presence of limit cycles for a certain range of parameters, behavior that is associated with hysteresis. The set of points defining the limit cycle is characterized and its asymptotic stability properties are studied. Furthermore, the stability property of the limit cycle is robust to small perturbations. Numerical simulations are presented to illustrate the results.Comment: 55 pages, 31 figures.Expanded version of paper in Special Issue on Hybrid Systems and Biology, Elsevier Information and Computation, 201

    An analysis of overall network architecture reveals an infinite-period bifurcation underlying oscillation arrest in the segmentation clock

    Full text link
    Unveiling the mechanisms through which the somitogenesis regulatory network exerts spatiotemporal control of the somitic patterning has required a combination of experimental and mathematical modeling strategies. Significant progress has been made for the zebrafish clockwork. However, due to its complexity, the clockwork of the amniote segmentation regulatory network has not been fully elucidated. Here, we address the question of how oscillations are arrested in the amniote segmentation clock. We do this by constructing a minimal model of the regulatory network, which privileges architectural information over molecular details. With a suitable choice of parameters, our model is able to reproduce the oscillatory behavior of the Wnt, Notch and FGF signaling pathways in presomitic mesoderm (PSM) cells. By introducing positional information via a single Wnt3a gradient, we show that oscillations are arrested following an infinite-period bifurcation. Notably: the oscillations increase their amplitude as cells approach the anterior PSM and remain in an upregulated state when arrested; the transition from the oscillatory regime to the upregulated state exhibits hysteresis; and an opposing distribution of the Fgf8 and RA gradients in the PSM arises naturally in our simulations. We hypothesize that the interaction between a limit cycle (originated by the Notch delayed-negative feedback loop) and a bistable switch (originated by the Wnt-Notch positive cross-regulation) is responsible for the observed segmentation patterning. Our results agree with previously unexplained experimental observations and suggest a simple plausible mechanism for spatiotemporal control of somitogenesis in amniotes.Comment: 11 pages, 5 figures, added references, added figures, extended supporting material, revised arguments in the discussion, corrected typo

    Designer Gene Networks: Towards Fundamental Cellular Control

    Full text link
    The engineered control of cellular function through the design of synthetic genetic networks is becoming plausible. Here we show how a naturally occurring network can be used as a parts list for artificial network design, and how model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics.Comment: 35 pages, 8 figure

    Network Topology as a Driver of Bistability in the lac Operon

    Full text link
    The lac operon in Escherichia coli has been studied extensively and is one of the earliest gene systems found to undergo both positive and negative control. The lac operon is known to exhibit bistability, in the sense that the operon is either induced or uninduced. Many dynamical models have been proposed to capture this phenomenon. While most are based on complex mathematical formulations, it has been suggested that for other gene systems network topology is sufficient to produce the desired dynamical behavior. We present a Boolean network as a discrete model for the lac operon. We include the two main glucose control mechanisms of catabolite repression and inducer exclusion in the model and show that it exhibits bistability. Further we present a reduced model which shows that lac mRNA and lactose form the core of the lac operon, and that this reduced model also exhibits the same dynamics. This work corroborates the claim that the key to dynamical properties is the topology of the network and signs of interactions.Comment: 15 pages, 13 figures, supplemental information include

    Emergence of switch-like behavior in a large family of simple biochemical networks

    Get PDF
    Bistability plays a central role in the gene regulatory networks (GRNs) controlling many essential biological functions, including cellular differentiation and cell cycle control. However, establishing the network topologies that can exhibit bistability remains a challenge, in part due to the exceedingly large variety of GRNs that exist for even a small number of components. We begin to address this problem by employing chemical reaction network theory in a comprehensive in silico survey to determine the capacity for bistability of more than 40,000 simple networks that can be formed by two transcription factor-coding genes and their associated proteins (assuming only the most elementary biochemical processes). We find that there exist reaction rate constants leading to bistability in ~90% of these GRN models, including several circuits that do not contain any of the TF cooperativity commonly associated with bistable systems, and the majority of which could only be identified as bistable through an original subnetwork-based analysis. A topological sorting of the two-gene family of networks based on the presence or absence of biochemical reactions reveals eleven minimal bistable networks (i.e., bistable networks that do not contain within them a smaller bistable subnetwork). The large number of previously unknown bistable network topologies suggests that the capacity for switch-like behavior in GRNs arises with relative ease and is not easily lost through network evolution. To highlight the relevance of the systematic application of CRNT to bistable network identification in real biological systems, we integrated publicly available protein-protein interaction, protein-DNA interaction, and gene expression data from Saccharomyces cerevisiae, and identified several GRNs predicted to behave in a bistable fashion.Comment: accepted to PLoS Computational Biolog

    Controlling spatiotemporal pattern formation in a concentration gradient with a synthetic toggle switch

    Get PDF
    The formation of spatiotemporal patterns of gene expression is frequently guided by gradients of diffusible signaling molecules. The toggle switch subnetwork, composed of two cross-repressing transcription factors, is a common component of gene regulatory networks in charge of patterning, converting the continuous information provided by the gradient into discrete abutting stripes of gene expression. We present a synthetic biology framework to understand and characterize the spatiotemporal patterning properties of the toggle switch. To this end, we built a synthetic toggle switch controllable by diffusible molecules in Escherichia coli. We analyzed the patterning capabilities of the circuit by combining quantitative measurements with a mathematical reconstruction of the underlying dynamical system. The toggle switch can produce robust patterns with sharp boundaries, governed by bistability and hysteresis. We further demonstrate how the hysteresis, position, timing, and precision of the boundary can be controlled, highlighting the dynamical flexibility of the circuit
    corecore