2,211 research outputs found

    On the effects of firing memory in the dynamics of conjunctive networks

    Full text link
    Boolean networks are one of the most studied discrete models in the context of the study of gene expression. In order to define the dynamics associated to a Boolean network, there are several \emph{update schemes} that range from parallel or \emph{synchronous} to \emph{asynchronous.} However, studying each possible dynamics defined by different update schemes might not be efficient. In this context, considering some type of temporal delay in the dynamics of Boolean networks emerges as an alternative approach. In this paper, we focus in studying the effect of a particular type of delay called \emph{firing memory} in the dynamics of Boolean networks. Particularly, we focus in symmetric (non-directed) conjunctive networks and we show that there exist examples that exhibit attractors of non-polynomial period. In addition, we study the prediction problem consisting in determinate if some vertex will eventually change its state, given an initial condition. We prove that this problem is {\bf PSPACE}-complete

    Emergence of robustness against noise: A structural phase transition in evolved models of gene regulatory networks

    Full text link
    We investigate the evolution of Boolean networks subject to a selective pressure which favors robustness against noise, as a model of evolved genetic regulatory systems. By mapping the evolutionary process into a statistical ensemble and minimizing its associated free energy, we find the structural properties which emerge as the selective pressure is increased and identify a phase transition from a random topology to a "segregated core" structure, where a smaller and more densely connected subset of the nodes is responsible for most of the regulation in the network. This segregated structure is very similar qualitatively to what is found in gene regulatory networks, where only a much smaller subset of genes --- those responsible for transcription factors --- is responsible for global regulation. We obtain the full phase diagram of the evolutionary process as a function of selective pressure and the average number of inputs per node. We compare the theoretical predictions with Monte Carlo simulations of evolved networks and with empirical data for Saccharomyces cerevisiae and Escherichia coli.Comment: 12 pages, 10 figure

    Quantification of reachable attractors in asynchronous discrete dynamics

    Full text link
    Motivation: Models of discrete concurrent systems often lead to huge and complex state transition graphs that represent their dynamics. This makes difficult to analyse dynamical properties. In particular, for logical models of biological regulatory networks, it is of real interest to study attractors and their reachability from specific initial conditions, i.e. to assess the potential asymptotical behaviours of the system. Beyond the identification of the reachable attractors, we propose to quantify this reachability. Results: Relying on the structure of the state transition graph, we estimate the probability of each attractor reachable from a given initial condition or from a portion of the state space. First, we present a quasi-exact solution with an original algorithm called Firefront, based on the exhaustive exploration of the reachable state space. Then, we introduce an adapted version of Monte Carlo simulation algorithm, termed Avatar, better suited to larger models. Firefront and Avatar methods are validated and compared to other related approaches, using as test cases logical models of synthetic and biological networks. Availability: Both algorithms are implemented as Perl scripts that can be freely downloaded from http://compbio.igc.gulbenkian.pt/nmd/node/59 along with Supplementary Material.Comment: 19 pages, 2 figures, 2 algorithms and 2 table
    • …
    corecore