25,185 research outputs found

    Dynamical Interactions with Electronic Instruments

    Get PDF
    This paper examines electronic instruments that incorporate dynamical systems, where the behaviour of the instrument depends not only upon the immediate input to the instrument, but also on the past input. Five instruments are presented as case studies: Michel Waisvisz’ Crackle-box, Dylan Menzies’ Spiro, no-input mixing desk, the author’s Feedback Joypad, and microphone-loudspeaker feedback. Links are suggested between the sonic affordances of each instrument and the dynamical mechanisms embedded in them. These affordances are contrasted with those of non-dynamical instruments such as the Theremin and sample-based instruments. This is discussed in the context of contemporary, material-oriented approaches to composition and particularly to free improvisation where elements such as unpredictability and instability are often of interest, and the process of exploration and discovery is an important part of the practice

    Phonons in aluminum at high temperatures studied by inelastic neutron scattering

    Get PDF
    Inelastic neutron scattering measurements on aluminum metal were performed at temperatures of 10, 150, 300, 525, and 775 K using direct-geometry Fermi chopper spectrometers. The temperature dependent phonon density of states (DOS) was determined from the scattering, and was used to fit Born–von Kármán models of lattice dynamics. The shifts in the phonon frequencies with increasing temperature were largely explained by the softening of the longitudinal force constants out to third nearest neighbors. A significant broadening of the phonon spectra at high temperatures was also measured. The phonon DOS was used to determine the vibrational contributions to the entropy of aluminum as a function of temperature. All other contributions to the entropy of aluminum were calculated or assessed, and the total entropy was in excellent agreement with the NIST-JANAF compilation [M. W. Chase, J. Phys. Chem. Ref. Data Monogr. 9, 59 (1998)]. Anharmonic effects were attributed to phonon-phonon interactions. The quasiharmonic approximation was generally successful, but its weaknesses are discussed

    Electron-ion coupling in semiconductors beyond Fermi's golden rule

    Full text link
    In the present work, a theoretical study of electron-phonon (electron-ion) coupling rates in semiconductors driven out of equilibrium is performed. Transient change of optical coefficients reflects the band gap shrinkage in covalently bonded materials, and thus, the heating of atomic lattice. Utilizing this dependence, we test various models of electron-ion coupling. The simulation technique is based on tight-binding molecular dynamics. Our simulations with the dedicated hybrid approach (XTANT) indicate that the widely used Fermi's golden rule can break down describing material excitation on femtosecond time scales. In contrast, dynamical coupling proposed in this work yields a reasonably good agreement of simulation results with available experimental data

    The HARPS search for southern extra-solar planets XIX. Characterization and dynamics of the GJ876 planetary system

    Full text link
    Precise radial-velocity measurements for data acquired with the HARPS spectrograph infer that three planets orbit the M4 dwarf star GJ876. In particular, we confirm the existence of planet "d", which orbits every 1.93785 days. We find that its orbit may have significant eccentricity (e=0.14), and deduce a more accurate estimate of its minimum mass of 6.3 Earth masses. Dynamical modeling of the HARPS measurements combined with literature velocities from the Keck Observatory strongly constrain the orbital inclinations of the "b" and "c" planets. We find that i_b = 48.9 degrees and i_c = 48.1 degrees, which infers the true planet masses of M_b = 2.64 Jupiter masses and M_c = 0.83 Jupiter masses, respectively. Radial velocities alone, in this favorable case, can therefore fully determine the orbital architecture of a multi-planet system, without the input from astrometry or transits. The orbits of the two giant planets are nearly coplanar, and their 2:1 mean motion resonance ensures stability over at least 5 Gyr. The libration amplitude is smaller than 2 degrees, suggesting that it was damped by some dissipative process during planet formation. The system has space for a stable fourth planet in a 4:1 mean motion resonance with planet "b", with a period around 15 days. The radial velocity measurements constrain the mass of this possible additional planet to be at most that of the Earth.Comment: 10 pages, 10 figures, accepted for publication in Astronomy & Astrophysic

    Interaction of Phonons and Dirac Fermions on the Surface of Bi2Se3: A Strong Kohn Anomaly

    Full text link
    We report the first measurements of phonon dispersion curves on the (001) surface of the strong three-dimensional topological insulator Bi2Se3. The surface phonon measurements were carried out with the aid of coherent helium beam surface scattering techniques. The results reveal a prominent signature of the exotic metallic Dirac fermion quasi-particles, including a strong Kohn anomaly. The signature is manifest in a low energy isotropic convex dispersive surface phonon branch with a frequency maximum of 1.8 THz, and having a V-shaped minimum at approximately 2kF that defines the Kohn anomaly. Theoretical analysis attributes this dispersive profile to the renormalization of the surface phonon excitations by the surface Dirac fermions. The contribution of the Dirac fermions to this renormalization is derived in terms of a Coulomb-type perturbation model

    Quantum properties of dichroic silicon vacancies in silicon carbide

    Get PDF
    The controlled generation and manipulation of atom-like defects in solids has a wide range of applications in quantum technology. Although various defect centres have displayed promise as either quantum sensors, single photon emitters or light-matter interfaces, the search for an ideal defect with multi-functional ability remains open. In this spirit, we investigate here the optical and spin properties of the V1 defect centre, one of the silicon vacancy defects in the 4H polytype of silicon carbide (SiC). The V1 centre in 4H-SiC features two well-distinguishable sharp optical transitions and a unique S=3/2 electronic spin, which holds promise to implement a robust spin-photon interface. Here, we investigate the V1 defect at low temperatures using optical excitation and magnetic resonance techniques. The measurements, which are performed on ensemble, as well as on single centres, prove that this centre combines coherent optical emission, with up to 40% of the radiation emitted into the zero-phonon line (ZPL), a strong optical spin signal and long spin coherence time. These results single out the V1 defect in SiC as a promising system for spin-based quantum technologies
    • 

    corecore