207 research outputs found

    A Microscopic-view Infection Model based on Linear Systems

    Get PDF
    Understanding the behavior of an infection network is typically addressed from either a microscopic or a macroscopic point-of-view. The trade-off is between following the individual states at some added complexity cost or looking at the ratio of infected nodes. In this paper, we focus on developing an alternative approach based on dynamical linear systems that combines the fine information of the microscopic view without the associated added complexity. Attention is shifted towards the problems of source localization and network topology discovery in the context of infection networks where a subset of the nodes is elected as observers. Finally, the possibility to control such networks is also investigated. Simulations illustrate the conclusions of the paper with particular interest on the relationship of the aforementioned problems with the topology of the network and the selected observer/controller nodes

    Modeling and Analysis of Bifurcation in a Delayed Worm Propagation Model

    Get PDF
    A delayed worm propagation model with birth and death rates is formulated. The stability of the positive equilibrium is studied. Through theoretical analysis, a critical value Ï„0 of Hopf bifurcation is derived. The worm propagation system is locally asymptotically stable when time delay is less than Ï„0. However, Hopf bifurcation appears when time delay Ï„ passes the threshold Ï„0, which means that the worm propagation system is unstable and out of control. Consequently, time delay should be adjusted to be less than Ï„0 to ensure the stability of the system stable and better prediction of the scale and speed of Internet worm spreading. Finally, numerical and simulation experiments are presented to simulate the system, which fully support our analysis

    A new buffering theory of social support and psychological stress

    Get PDF
    A dynamical model linking stress, social support, and health has been recently proposed and numerically analyzed from a classical point of view of integer-order calculus. Although interesting observations have been obtained in this way, the present work conducts a fractional-order analysis of that model. Under a periodic forcing of an environmental stress variable, the perceived stress has been analyzed through bifurcation diagrams and two well-known metrics of entropy and complexity, such as spectral entropy and C0 complexity. The results obtained by numerical simulations have shown novel insights into how stress evolves with frequency and amplitude of the perturbation, as well as with initial conditions for the system variables. More precisely, it has been observed that stress can alternate between chaos, periodic oscillations, and stable behaviors as the fractional order varies. Moreover, the perturbation frequency has revealed a narrow interval for the chaotic oscillations, while its amplitude may present different values indicating a low sensitivity regarding chaos generation. Also, the perceived stress has been noted to be highly sensitive to initial conditions for the symptoms of stress-related ill-health and for the social support received from family and friends. This work opens new directions of research whereby fractional calculus might offer more insight into psychology, life sciences, mental disorders, and stress-free well-being

    Central nervous system: overall considerations based on hardware realization of digital spiking silicon neurons (dssns) and synaptic coupling

    Get PDF
    The Central Nervous System (CNS) is the part of the nervous system including the brain and spinal cord. The CNS is so named because the brain integrates the received information and influences the activity of different sections of the bodies. The basic elements of this important organ are: neurons, synapses, and glias. Neuronal modeling approach and hardware realization design for the nervous system of the brain is an important issue in the case of reproducing the same biological neuronal behaviors. This work applies a quadratic-based modeling called Digital Spiking Silicon Neuron (DSSN) to propose a modified version of the neuronal model which is capable of imitating the basic behaviors of the original model. The proposed neuron is modeled based on the primary hyperbolic functions, which can be realized in high correlation state with the main model (original one). Really, if the high-cost terms of the original model, and its functions were removed, a low-error and high-performance (in case of frequency and speed-up) new model will be extracted compared to the original model. For testing and validating the new model in hardware state, Xilinx Spartan-3 FPGA board has been considered and used. Hardware results show the high-degree of similarity between the original and proposed models (in terms of neuronal behaviors) and also higher frequency and low-cost condition have been achieved. The implementation results show that the overall saving is more than other papers and also the original model. Moreover, frequency of the proposed neuronal model is about 168 MHz, which is significantly higher than the original model frequency, 63 MHz

    Modeling and Optimization of Dynamical Systems in Epidemiology using Sparse Grid Interpolation

    Get PDF
    Infectious diseases pose a perpetual threat across the globe, devastating communities, and straining public health resources to their limit. The ease and speed of modern communications and transportation networks means policy makers are often playing catch-up to nascent epidemics, formulating critical, yet hasty, responses with insufficient, possibly inaccurate, information. In light of these difficulties, it is crucial to first understand the causes of a disease, then to predict its course, and finally to develop ways of controlling it. Mathematical modeling provides a methodical, in silico solution to all of these challenges, as we explore in this work. We accomplish these tasks with the aid of a surrogate modeling technique known as sparse grid interpolation, which approximates dynamical systems using a compact polynomial representation. Our contributions to the disease modeling community are encapsulated in the following endeavors. We first explore transmission and recovery mechanisms for disease eradication, identifying a relationship between the reproductive potential of a disease and the maximum allowable disease burden. We then conduct a comparative computational study to improve simulation fits to existing case data by exploiting the approximation properties of sparse grid interpolants both on the global and local levels. Finally, we solve a joint optimization problem of periodically selecting field sensors and deploying public health interventions to progressively enhance the understanding of a metapopulation-based infectious disease system using a robust model predictive control scheme
    • …
    corecore