1,083 research outputs found

    Network Inoculation: Heteroclinics and phase transitions in an epidemic model

    Get PDF
    In epidemiological modelling, dynamics on networks, and in particular adaptive and heterogeneous networks have recently received much interest. Here we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description one of these corresponds to a local bifurcation whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region exposure of the system to a pathogen will lead to an outbreak that collapses, but leaves the network in a configuration where the disease cannot reinvade, despite every agent returning to the susceptible class. We argue that this behaviour and the associated phase transitions can be expected to occur in a wide class of models of sufficient complexity.Comment: 26 pages, 11 figure

    Spread of Malicious Objects in Computer Network: A Fuzzy Approach

    Get PDF
    We propose an e-epidemic fuzzy SEIQRS (Susceptible-Exposed-Infectious-Quarantine- Recovered-Susceptible) model for the transmission of malicious codes in a computer network. We have simulated the result for various parameters and analyzed the stability of the model. The efficiency of antivirus software and crashing of the nodes due to attack of malicious code is analyzed. Furthermore, initial simulation results illustrate the behavior of different classes for minimizing the infection in a computer network. It also reflects the positive impact of anti-virus software on malicious code propagation in a computer network. The basic reproduction number R0 f and its formulation is also discussed

    Study on Viral Transmission Impact on Human Population Using Fractional Order Zika Virus Model

    Get PDF
    This work comprises the spread of Zika virus between humans and mosquitoes as a mathematical simulation under fractional order, which also incorporates the asymptotically infected human population. For determining the solution of the model the fuzzy Laplace transform technique is utilized. By combining fuzzy logic with the Laplace transform, we can analyze systems even when we lack precise information. Further, the sensitivity analysis is performed to validate the model. On top of that the population dynamics of both human and mosquito populations are discussed using numerical data and the graphical result of the model is presented. The main objective of this work is to study the dynamics of the Zika virus and to examine the effect of virus on humans when the transmission occurs between humans and from mosquitoes, under fractional order. The outcome of these comparisons suggests that even by reducing a minute fractional part of transmission through mosquitoes results in a greater reduction of Zika exposed population. The comparisons improve the understanding of fractional level transmission resulting in more effective drug administration to patients. The Hyers-Ulam stability method is a mathematical technique used to study the stability of functional equations. Eventually, Ulam Hyers and Ulam Hyers Rassias stability are employed to assess the stability of the proposed model

    Some Remarks about the Complexity of Epidemics Management

    Full text link
    Recent outbreaks of Ebola, H1N1 and other infectious diseases have shown that the assumptions underlying the established theory of epidemics management are too idealistic. For an improvement of procedures and organizations involved in fighting epidemics, extended models of epidemics management are required. The necessary extensions consist in a representation of the management loop and the potential frictions influencing the loop. The effects of the non-deterministic frictions can be taken into account by including the measures of robustness and risk in the assessment of management options. Thus, besides of the increased structural complexity resulting from the model extensions, the computational complexity of the task of epidemics management - interpreted as an optimization problem - is increased as well. This is a serious obstacle for analyzing the model and may require an additional pre-processing enabling a simplification of the analysis process. The paper closes with an outlook discussing some forthcoming problems

    Fuzzy modeling for the spread of influenza virus and its possible control

    Get PDF
    In this paper, we analyze a model of Influenza spread with an asymptotic transmission rate, wherein the disease transmission rate and death rate are considered as fuzzy sets. Comparative studies of the equilibrium points of the disease for the classical and fuzzy models are performed. Using the concept of probability measure and fuzzy expected value, we obtain the fuzzy basic reproduction number for groups of infected individuals with different virus loads. Further, a basic reproduction number for the classical and the fuzzy model are compared. Finally, a program based on the basic reproduction value of disease control is suggested and the numerical simulations are carried out to illustrate the analytical results

    Complexity, Analysis and Control of Singular Biological Systems

    Full text link

    Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy

    Get PDF
    Abstract The human immunodeficiency virus (HIV), as one of the most hazardous viruses, causes destructive effects on the human bodies' immune system. Hence, an immense body of research has focused on developing antiretroviral therapies for HIV infection. In the current study, we propose a new control technique for a fractional-order HIV infection model. Firstly, a fractional model of the HIV model is investigated, and the importance of the fractional-order derivative in the modeling of the system is shown. Afterward, a type-2 fuzzy logic controller is proposed for antiretroviral therapy of HIV infection. The developed control scheme consists of two individual controllers and an aggregator. The optimal aggregator modifies the output of each individual controller. Simulations for two different strategies are conducted. In the first strategy, only reverse transcriptase inhibitor (RTI) is used, and the superiority of the proposed controller over a conventional fuzzy controller is demonstrated. Lastly, in the second strategy, both RTI and protease inhibitors (PI) are used simultaneously. In this case, an optimal type-2 fuzzy aggregator is also proposed to modify the output of the individual controllers based on optimal rules. Simulations results demonstrate the appropriate performance of the designed control scheme for the uncertain system
    • …
    corecore