4,610 research outputs found

    Optimizing spread dynamics on graphs by message passing

    Full text link
    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the last decades, many efforts have been devoted to understand the typical behaviour of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception of models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).Comment: Replacement for "The Spread Optimization Problem

    Topics in social network analysis and network science

    Full text link
    This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recently, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided

    Cultural evolutionary theory as a theory of forces

    Get PDF
    Cultural evolutionary theory has been alternatively compared to a theory of forces, such as Newtonian mechanics, or the kinetic theory of gases. In this article, I clarify the scope and significance of these metatheoretical characterisations. First, I discuss the kinetic analogy, which has been recently put forward by Tim Lewens. According to it, cultural evolutionary theory is grounded on a bottom-up methodology, which highlights the additive effects of social learning biases on the emergence of large-scale cultural phenomena. Lewens supports this claim by arguing that it is a consequence of cultural evolutionists’ widespread commitment to population thinking. While I concur with Lewens that cultural evolutionists often actually conceive cultural change in aggregative terms, I think that the kinetic framework does not properly account for the explanatory import of population- level descriptions in cultural evolutionary theory. Starting from a criticism of Lewens’ interpretation of population thinking, I argue that the explanatory role of such descriptions is best understood within a dynamical framework – that is, a framework according to which cultural evolutionary theory is a theory of forces. After having spelled out the main features of this alternative interpretation, I elucidate in which respects it helps to outline a more accurate characterisation of the overarching structure of cultural evolutionary theory
    • …
    corecore