330 research outputs found

    Recurrent backpropagation and the dynamical approach to adaptive neural computation

    Get PDF
    Error backpropagation in feedforward neural network models is a popular learning algorithm that has its roots in nonlinear estimation and optimization. It is being used routinely to calculate error gradients in nonlinear systems with hundreds of thousands of parameters. However, the classical architecture for backpropagation has severe restrictions. The extension of backpropagation to networks with recurrent connections will be reviewed. It is now possible to efficiently compute the error gradients for networks that have temporal dynamics, which opens applications to a host of problems in systems identification and control

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Second Order Neural Networks.

    Get PDF
    In this dissertation, a feedback neural network model has been proposed. This network uses a second order method of convergence based on the Newton-Raphson method. This neural network has both discrete as well as continuous versions. When used as an associative memory, the proposed model has been called the polynomial neural network (PNN). The memories of this network can be located anywhere in an n dimensional space rather than being confined to the corners of the latter. A method for storing memories has been proposed. This is a single step method unlike the currently known computationally intensive iterative methods. An energy function for the polynomial neural network has been suggested. Issues relating to the error-correcting ability of this network have been addressed. Additionally, it has been found that the attractor basins of the memories of this network reveal a curious fractal topology, thereby suggesting a highly complex and often unpredictable nature. The use of the second order neural network as a function optimizer has also been shown. While issues relating to the hardware realization of this network have only been addressed briefly, it has been indicated that such a network would have a large amount of hardware for its realization. This problem can be obviated by using a simplified model that has also been described. The performance of this simplified model is comparable to that of the basic model while requiring much less hardware for its realization
    • …
    corecore