5,939 research outputs found

    A Survey on Evaluation Factors for Business Process Management Technology

    Get PDF
    Estimating the value of business process management (BPM) technology is a difficult task to accomplish. Computerized business processes have a strong impact on an organization, and BPM projects have a long-term cost amortization. To systematically analyze BPM technology from an economic-driven perspective, we are currently developing an evaluation framework in the EcoPOST project. In order to empirically validate the relevance of assumed evaluation factors (e.g., process knowledge, business process redesign, end user fears, and communication) we have conducted an online survey among 70 BPM experts from more than 50 industrial and academic organizations. This paper summarizes the results of this survey. Our results help both researchers and practitioners to better understand the evaluation factors that determine the value of BPM technology

    An Approach for Supporting Ad-hoc Modifications in Distributed Workflow Management Systems

    Get PDF
    Supporting enterprise-wide or even cross-organizational business processes is a characteristic challenge for any workflow management system (WfMS). Scalability at the presence of high loads as well as the capability to dynamically modify running workflow (WF) instances (e.g., to cope with exceptional situations) are essential requirements in this context. Should the latter one, in particular, not be met, the WfMS will not have the necessary flexibility to cover the wide range of process-oriented applications deployed in many organizations. Scalability and flexibility have, for the most part, been treated separately in the relevant literature thus far. Even though they are basic needs for a WfMS, the requirements related with them are totally different. To achieve satisfactory scalability, on the one hand, the system needs to be designed such that a workflow instance can be controlled by several WF servers that are as independent from each other as possible. Yet dynamic WF modifications, on the other hand, necessitate a (logical) central control instance which knows the current and global state of a WF instance. For the first time, this paper presents methods which allow ad-hoc modifications (e.g., to insert, delete, or shift steps) to be performed in a distributed WfMS; i.e., in a WfMS with partitioned WF execution graphs and distributed WF control. It is especially noteworthy that the system succeeds in realizing the full functionality as given in the central case while, at the same time, achieving extremely favorable behavior with respect to communication costs

    A System for Deduction-based Formal Verification of Workflow-oriented Software Models

    Full text link
    The work concerns formal verification of workflow-oriented software models using deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are considered as a set of temporal logic formulas, seems to be the significant obstacle for an inexperienced user when applying the deductive approach. A system, and its architecture, for the deduction-based verification of workflow-oriented models is proposed. The process of inference is based on the semantic tableaux method which has some advantages when compared to traditional deduction strategies. The algorithm for an automatic generation of logical specifications is proposed. The generation procedure is based on the predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea for the approach is to consider patterns, defined in terms of temporal logic,as a kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between intuitiveness of the deductive reasoning and the difficulty of its practical application in the case when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing our understanding of, the deduction-based formal verification of workflow-oriented models.Comment: International Journal of Applied Mathematics and Computer Scienc

    A network approach for managing and processing big cancer data in clouds

    Get PDF
    Translational cancer research requires integrative analysis of multiple levels of big cancer data to identify and treat cancer. In order to address the issues that data is decentralised, growing and continually being updated, and the content living or archiving on different information sources partially overlaps creating redundancies as well as contradictions and inconsistencies, we develop a data network model and technology for constructing and managing big cancer data. To support our data network approach for data process and analysis, we employ a semantic content network approach and adopt the CELAR cloud platform. The prototype implementation shows that the CELAR cloud can satisfy the on-demanding needs of various data resources for management and process of big cancer data

    Grid-job scheduling with reservations and preemption

    Get PDF
    Computational grids make it possible to exploit grid resources across multiple clusters when grid jobs are deconstructed into tasks and allocated across clusters. Grid-job tasks are often scheduled in the form of workflows which require synchronization, and advance reservation makes it easy to guarantee predictable resource provisioning for these jobs. However, advance reservation for grid jobs creates roadblocks and fragmentation which adversely affects the system utilization and response times for local jobs. We provide a solution which incorporates relaxed reservations and uses a modified version of the standard grid-scheduling algorithm, HEFT, to obtain flexibility in placing reservations for workflow grid jobs. Furthermore, we deploy the relaxed reservation with modified HEFT as an extension of the preemption based job scheduling framework, SCOJO-PECT job scheduler. In SCOJO-PECT, relaxed reservations serve the additional purpose of permitting scheduler optimizations which shift the overall schedule forward. Furthermore, a propagation heuristics algorithm is used to alleviate the workflow job makespan extension caused by the slack of relaxed reservation. Our solution aims at decreasing the fragmentation caused by grid jobs, so that local jobs and system utilization are not compromised, and at the same time grid jobs also have reasonable response times

    TUPLESPACE-BASED INFRASTRUCTURE FOR DECENTRALIZED ENACTMENT OF BPEL PROCESSES

    Get PDF
    Business processes in WS-BPEL are a manifestation of the two-level-programming paradigm where remote-accessible Web services are composed to potentially complex orchestrations. WSBPEL processes are executed by Workflow Management Systems that navigate through the process\u27 activities and interact with the orchestrated services. While Web service technology enables interactions with remote services, process navigation is typically done in a centralized manner. Especially in scenarios of complex interactions between multiple distributed process participants, this way of process enactment has several drawbacks. In this paper, we outline those drawbacks and propose an alternative approach to execution of BPEL processes in a distributed, decentralized manner
    corecore