104,918 research outputs found

    Analysis of Information Visualization Techniques for Abstract data on Mobile Devices

    Get PDF
    To perform visualization on mobile devices different types of data may use like text, picture, maps, physical objects, abstract data etc. According to data visualization is categorized in two areas of visualization that is, scientific visualization and information visualization. Scientific visualization refers to some specific type of data like physical data and it is used for computer modeling and simulation. Information visualization refers to abstract data and used in business and finance, administration, digital media and other abstract concepts. The physical and abstract data is only one classification but there are others classification like static and dynamic data, structured and unstructured data, or hierarchical and non-hierarchical data classification. This paper is focus on information visualization of abstract data on mobile devices

    SplitStreams: A Visual Metaphor for Evolving Hierarchies

    Get PDF
    The visualization of hierarchically structured data over time is an ongoing challenge and several approaches exist trying to solve it. Techniques such as animated or juxtaposed tree visualizations are not capable of providing a good overview of the time series and lack expressiveness in conveying changes over time. Nested streamgraphs provide a better understanding of the data evolution, but lack the clear outline of hierarchical structures at a given timestep. Furthermore, these approaches are often limited to static hierarchies or exclude complex hierarchical changes in the data, limiting their use cases. We propose a novel visual metaphor capable of providing a static overview of all hierarchical changes over time, as well as clearly outlining the hierarchical structure at each individual time step. Our method allows for smooth transitions between tree maps and nested streamgraphs, enabling the exploration of the trade-off between dynamic behavior and hierarchical structure. As our technique handles topological changes of all types, it is suitable for a wide range of applications. We demonstrate the utility of our method on several use cases, evaluate it with a user study, and provide its full source code.acceptedVersio

    Generating concept trees from dynamic self-organizing map

    Get PDF
    Self-organizing map (SOM) provides both clustering and visualization capabilities in mining data. Dynamic self-organizing maps such as Growing Self-organizing Map (GSOM) has been developed to overcome the problem of fixed structure in SOM to enable better representation of the discovered patterns. However, in mining large datasets or historical data the hierarchical structure of the data is also useful to view the cluster formation at different levels of abstraction. In this paper, we present a technique to generate concept trees from the GSOM. The formation of tree from different spread factor values of GSOM is also investigated and the quality of the trees analyzed. The results show that concept trees can be generated from GSOM, thus, eliminating the need for re-clustering of the data from scratch to obtain a hierarchical view of the data under study
    • …
    corecore