3,943 research outputs found

    Dynamic video surveillance systems guided by domain ontologies

    Full text link
    This paper is a postprint of a paper submitted to and accepted for publication in 3rd International Conference on Imaging for Crime Detection and Prevention (ICDP 2009), and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library and IEEE XploreIn this paper we describe how the knowledge related to a specific domain and the available visual analysis tools can be used to create dynamic visual analysis systems for video surveillance. Firstly, the knowledge is described in terms of application domain (types of objects, events... that can appear in such domain) and system capabilities (algorithms, detection procedures...) by using an existing ontology. Secondly, the ontology is integrated into a framework to create the visual analysis systems for each domain by inspecting the relations between the entities defined in the domain and system knowledge. Additionally, when necessary, analysis tools could be added or removed on-line. Experiments/Application of the framework show that the proposed approach for creating dynamic visual analysis systems is suitable for analyzing different video surveillance domains without decreasing the overall performance in terms of computational time or detection accuracy.This work was partially supported by the Spanish Administration agency CDTI (CENIT-VISION 2007-1007), by the Spanish Government (TEC2007- 65400 SemanticVideo), by the Comunidad de Madrid (S-050/TIC-0223 - ProMultiDis), by Cátedra Infoglobal-UAM for “Nuevas Tecnologías de video aplicadas a la seguridad”, by the Consejería de Educación of the Comunidad de Madrid and by The European Social Fund

    Strategies and Techniques for Use and Exploitation of Contextual Information in High-Level Fusion Architectures

    Get PDF
    Proceedings of: 13th Conference on Information Fusion (FUSION 2010): Edinburgh, UK. 26-29 July 2010.Contextual Information is proving to be not only an additional exploitable information source for improving entity and situational estimates in certain Information Fusion systems, but can also be the entire focus of estimation for such systems as those directed to Ambient Intelligence (AI) and Context-Aware(CA) applications. This paper will discuss the role(s) of Contextual Information (CI) in a wide variety of IF applications to include AI, CA, Defense, and Cyber-security among possible others, the issues involved in designing strategies and techniques for CI use and exploitation, provide some exemplars of evolving CI use/exploitation designs on our current projects, and describe some general frameworks that are evolving in various application domains where CI is proving critical.The UC3M Team gratefully acknowledge that this research activity is supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732- C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02. UC3M also thanks Prof. James Llinas for his helpful comments during his stay, which has been supported by the collaboration agreement ‘Chairs of Excellence’ between University Carlos III and Banco Santander. The US/UB Team gratefully acknowledge that this research activity is supported by a Multidisciplinary University Research Initiative (MURI) grant (Number W911NF-09-1-0392) for “Unified Research on Networkbased Hard/Soft Information Fusion”, issued by the US Army Research Office (ARO) under the program management of Dr. John LaveryPublicad

    High-Level Information Fusion in Visual Sensor Networks

    Get PDF
    Information fusion techniques combine data from multiple sensors, along with additional information and knowledge, to obtain better estimates of the observed scenario than could be achieved by the use of single sensors or information sources alone. According to the JDL fusion process model, high-level information fusion is concerned with the computation of a scene representation in terms of abstract entities such as activities and threats, as well as estimating the relationships among these entities. Recent experiences confirm that context knowledge plays a key role in the new-generation high-level fusion systems, especially in those involving complex scenarios that cause the failure of classical statistical techniques –as it happens in visual sensor networks. In this chapter, we study the architectural and functional issues of applying context information to improve high-level fusion procedures, with a particular focus on visual data applications. The use of formal knowledge representations (e.g. ontologies) is a promising advance in this direction, but there are still some unresolved questions that must be more extensively researched.The UC3M Team gratefully acknowledges that this research activity is supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    A semantic-guided and self-configurable framework for video analysis

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00138-011-0397-xThis paper presents a distributed and scalable framework for video analysis that automatically estimates the optimal workflow required for the analysis of different application domains. It integrates several technologies related with data acquisition, visual analysis tools, communication protocols, and data storage. Moreover, hierarchical semantic representations are included in the framework to describe the application domain, the analysis capabilities, and the user preferences. The automatic determination of the analysis workflow is performed by selecting the most appropriate tools for each domain among the available ones in the framework by means of exploiting the relations between the semantic descriptions. The experimental results in the video surveillance domain demonstrate that the proposed approach successfully composes optimal workflows for video analysis applications.This work has been partially supported by the Spanish Government (TEC2011-25995), by the ConsejerĂ­a de EducaciĂłn of the Comunidad de Madrid and by The European Social Fund

    Human-robot teamwork: a knowledge-based solution

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia ElectrotĂ©cnica e de ComputadoresTeams of humans and robots pose new challenges to the teamwork field. This stems from the fact that robots and humans have significantly different perceptual, reasoning, communication and actuation capabilities. This dissertation contributes to solving this problem by proposing a knowledge-based multi-agent system to support design and execution of stereotyped (i.e. recurring) human-robot teamwork. The cooperative workflow formalism has been selected to specify team plans, and adapted to allow activities to share structured data, even during their execution. This novel functionality enables tightly coupled interactions among team members. Rather than focusing on automatic teamwork planning, this dissertation proposes a complementary and intuitive knowledge-based solution for fast deployment and adaptation of small scale human-robot teams. In addition, the system has been designed in order to improve task awareness of each mission participant, and of the human overall mission awareness. A set of empirical results obtained from simulated and real missions proved the concept and the reusability of such a system. Practical results showed that this approach used is an effective solution for small scale teams in stereotyped human-robot teamwork

    Towards robust and reliable multimedia analysis through semantic integration of services

    Get PDF
    Thanks to ubiquitous Web connectivity and portable multimedia devices, it has never been so easy to produce and distribute new multimedia resources such as videos, photos, and audio. This ever-increasing production leads to an information overload for consumers, which calls for efficient multimedia retrieval techniques. Multimedia resources can be efficiently retrieved using their metadata, but the multimedia analysis methods that can automatically generate this metadata are currently not reliable enough for highly diverse multimedia content. A reliable and automatic method for analyzing general multimedia content is needed. We introduce a domain-agnostic framework that annotates multimedia resources using currently available multimedia analysis methods. By using a three-step reasoning cycle, this framework can assess and improve the quality of multimedia analysis results, by consecutively (1) combining analysis results effectively, (2) predicting which results might need improvement, and (3) invoking compatible analysis methods to retrieve new results. By using semantic descriptions for the Web services that wrap the multimedia analysis methods, compatible services can be automatically selected. By using additional semantic reasoning on these semantic descriptions, the different services can be repurposed across different use cases. We evaluated this problem-agnostic framework in the context of video face detection, and showed that it is capable of providing the best analysis results regardless of the input video. The proposed methodology can serve as a basis to build a generic multimedia annotation platform, which returns reliable results for diverse multimedia analysis problems. This allows for better metadata generation, and improves the efficient retrieval of multimedia resources

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)
    • 

    corecore