161 research outputs found

    Revenue generation for truthful spectrum auction in dynamic spectrum access

    Get PDF
    Spectrum is a critical yet scarce resource and it has been shown that dynamic spectrum access can significantly improve spectrum utilization. To achieve this, it is important to incentivize the primary license holders to open up their under-utilized spectrum for sharing. In this paper we present a secondary spectrum market where a primary license holder can sell access to its unused or under-used spectrum resources in the form of certain fine-grained spectrumspace-time unit. Secondary wireless service providers can purchase such contracts to deploy new service, enhance their existing service, or deploy ad hoc service to meet flash crowds demand. Within the context of this market, we investigate how to use auction mechanisms to allocate and price spectrum resources so that the primary license holder’s revenue is maximized. We begin by classifying a number of alternative auction formats in terms of spectrum demand. We then study a specific auction format where secondary wireless service providers have demands for fixed locations (cells). We propose an optimal auction based on the concept of virtual valuation. Assuming the knowledge of valuation distributions, the optimal auction uses the Vickrey-Clarke-Groves (VCG) mechanism to maximize the expected revenue while enforcing truthfulness. To reduce the computational complexity, we further design a truthful suboptimal auction with polynomial time complexity. It uses a monotone allocation and critical value payment to enforce truthfulness. Simulation results show that this suboptimal auction can generate stable expected revenue

    Game theory for dynamic spectrum sharing cognitive radio

    Get PDF
    ‘Game Theory’ is the formal study of conflict and cooperation. The theory is based on a set of tools that have been developed in order to assist with the modelling and analysis of individual, independent decision makers. These actions potentially affect any decisions, which are made by other competitors. Therefore, it is well suited and capable of addressing the various issues linked to wireless communications. This work presents a Green Game-Based Hybrid Vertical Handover Model. The model is used for heterogeneous wireless networks, which combines both dynamic (Received Signal Strength and Node Mobility) and static (Cost, Power Consumption and Bandwidth) factors. These factors control the handover decision process; whereby the mechanism successfully eliminates any unnecessary handovers, reduces delay and overall number of handovers to 50% less and 70% less dropped packets and saves 50% more energy in comparison to other mechanisms. A novel Game-Based Multi-Interface Fast-Handover MIPv6 protocol is introduced in this thesis as an extension to the Multi-Interface Fast-handover MIPv6 protocol. The protocol works when the mobile node has more than one wireless interface. The protocol controls the handover decision process by deciding whether a handover is necessary and helps the node to choose the right access point at the right time. In addition, the protocol switches the mobile nodes interfaces ‘ON’ and ‘OFF’ when needed to control the mobile node’s energy consumption and eliminate power lost of adding another interface. The protocol successfully reduces the number of handovers to 70%, 90% less dropped packets, 40% more received packets and acknowledgments and 85% less end-to-end delay in comparison to other Protocols. Furthermore, the thesis adapts a novel combination of both game and auction theory in dynamic resource allocation and price-power-based routing in wireless Ad-Hoc networks. Under auction schemes, destinations nodes bid the information data to access to the data stored in the server node. The server will allocate the data to the winner who values it most. Once the data has been allocated to the winner, another mechanism for dynamic routing is adopted. The routing mechanism is based on the source-destination cooperation, power consumption and source-compensation to the intermediate nodes. The mechanism dramatically increases the seller’s revenue to 50% more when compared to random allocation scheme and briefly evaluates the reliability of predefined route with respect to data prices, source and destination cooperation for different network settings. Last but not least, this thesis adjusts an adaptive competitive second-price pay-to-bid sealed auction game and a reputation-based game. This solves the fairness problems associated with spectrum sharing amongst one primary user and a large number of secondary users in a cognitive radio environment. The proposed games create a competition between the bidders and offers better revenue to the players in terms of fairness to more than 60% in certain scenarios. The proposed game could reach the maximum total profit for both primary and secondary users with better fairness; this is illustrated through numerical results.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Carrier aggregation in lte-advanced

    Get PDF
    Advancement in mobile communication technology has led to an increase in data usage due to smart electronic gadgets. Despite of increased spectrum efficiency the required data rates (1 Gbps) for 4G LTE Advanced system cannot be attained. To attain these very high data rates it is required to increase the transmission bandwidths (up to 100 MHz) over those that can be supported by a single carrier or channel. The technique being proposed is named as carrier aggregation (CA) to aggregate two or more component carriers (CCs). These channels or carriers may be contiguous components of the spectrum, or they may be in different bands resulting in Intra-band contiguous CA, Intra-band non-contiguous CA and Inter-band CA. Carrier aggregation is supported by both formats of LTE, namely the FDD and TDD variants. This guarantees that both FDD LTE and TDD LTE are capable of meeting the high data throughput requirements placed upon them. With carrier aggregation, it is likely to schedule a user equipment (UE) on multiple component carriers simultaneously i.e. multiple spectrum bands are exploited by the same user in order to fulfil the large bandwidth requirement of the service and attain enhanced performance. The first release of 3GPP LTE facilitated extensive support for deployment in spectrum allocations of several characteristics, with transmission bandwidths extending from 1.4MHz up to 20MHz in both paired and unpaired bands. One of the most significant features to drift from LTE system to LTE-A system is Carrier aggregation. Furthermore an LTE Advanced user is backward compatible with LTE. Carrier aggregation is a multi-carrier technique, where vacant SCC (Secondary Component Carrier) is combined with the PCC (Primary Component Carrier) that is allocated to the user equipment. Five component carriers each of 20 MHz are combined to increase bandwidth to 100 MHz for high data rates

    A determination of the risk of intentional and unintentional electromagnetic radiation emitters degrading installed components in closed electromagnetic environments

    Get PDF
    This report proposes a method of risk determination that incorporates a loss function and a probability function in order to better enable decision makers in determining the risk of implementing wireless technologies in reverberant enclosed spaces that contain sensitive installed components. There is a constant desire to include new technology into the systems being designed to operate onboard U.S. Naval vessels. One of these technologies is wireless communications. This technology relies on the use of the electromagnetic spectrum in order to transfer information from one point to another. This type of information transfer can be advantageous in various applications. Exposing sensitive electronic components to a time-varying electromagnetic field increases the risk of an electronic upset in those components that will degrade the functionality of installed systems. This risk determination should provide a way to weigh the risk of introducing wireless technologies in enclosed spaces. This risk determination relies on the assumption that at some point there will be enough data collected to properly determine the overall risk to at-risk equipment. Until that occurs, incorporating new methods of shielding and low power technologies is recommended.http://archive.org/details/adeterminationof1094545882Lieutenant Commander, United States NavyApproved for public release; distribution is unlimited

    Sustaining Glasgow's Urban Networks: the Link Communities of Complex Urban Systems

    Get PDF
    As cities grow in population size and became more crowded (UN DESA, 2018), the main future challenges around the world will remain to be accommodating the growing urban population while drastically reducing environmental pressure. Contemporary urban agglomerations (large or small) constantly impose burden on the natural environment by conveying ecosystem services to close and distant places, through coupled human nature [infrastructure] systems (CHANS). Tobler’s first law in geography (1970) that states that “everything is related to everything else, but near things are more related than distant things” is now challenged by globalization. When this law was first established, the hypothesis referred to geological processes (Campbell and Shin, 2012, p.194) that were predominantly observed in pre-globalized economy, where freight was costly and mainly localized (Zhang et al., 2018). With the recent advances and modernisation made in transport technologies, most of them in the sea and air transportation (Zhang et al., 2018) and the growth of cities in population, natural resources and bi-products now travel great distances to infiltrate cities (Neuman, 2006) and satisfy human demands. Technical modernisation and the global hyperconnectivity of human interactions and trading, in the last thirty years alone resulted with staggering 94 per cent growth of resource extraction and consumption (Giljum et al., 2015). Local geographies (Kennedy, Cuddihy and Engel-Yan, 2007) will remain affected by global urbanisation (Giljum et al., 2015), and as a corollary, the operational inefficiencies of their local infrastructure networks, will contribute even more to the issues of environmental unsustainability on a global scale. Another challenge for future city-regions is the equity of public infrastructure services and policy creation that promote the same (Neuman and Hull, 2009). Public infrastructure services refer to services provisioned by networked infrastructure, which are subject to both public obligation and market rules. Therefore, their accessibility to all citizens needs to be safeguarded. The disparity of growth between networked infrastructure and socio-economic dynamics affects the sustainable assimilation and equal access to infrastructure in various districts in cities, rendering it as a privilege. Yet, the empirical evidence of whether the place of residence acts as a disadvantage to public service access and use, remains rather scarce (Clifton et al., 2016). The European Union recognized (EU, 2011) the issue of equality in accessibility (i.e. equity) critical for territorial cohesion and sustainable development across districts, municipalities and regions with diverse economic performance. Territorial cohesion, formally incorporated into the Treaty of Lisbon, now steers the policy frameworks of territorial development within the Union. Subsequently, the European Union developed a policy paradigm guided by equal access (Clifton et al., 2016) to public infrastructure services, considering their accessibility as instrumental aspect in achieving territorial cohesion across and within its member states. A corollary of increasing the equity to public infrastructure services among growing global population is the potential increase in environmental pressure they can impose, especially if this pressure is not decentralised and surges at unsustainable rate (Neuman, 2006). This danger varies across countries and continents, and is directly linked to the increase of urban population due to; [1] improved quality of life and increased life expectancy and/or [2] urban in-migration of rural population and/or [3] global political or economic immigration. These three rising urban trends demand new approaches to reimagine planning and design practices that foster infrastructure equity, whilst delivering environmental justice. Therefore, this research explores in depth the nature of growth of networked infrastructure (Graham and Marvin, 2001) as a complex system and its disparity from the socio-economic growth (or decline) of Glasgow and Clyde Valley city-region. The results of this research gain new understanding in the potential of using emerging tools from network science for developing optimization strategy that supports more cecentralized, efficient, fair and (as an outcome) sustainable enlargement of urban infrastructure, to accommodate new and empower current residents of the city. Applying the novel link clustering community detection algorithm (Ahn et al., 2010) in this thesis I have presented the potential for better understanding the complexity behind the urban system of networked infrastructure, through discovering their overlapping communities. As I will show in the literature review (Chapter 2), the long standing tradition of centralised planning practice relying on zoning and infiltrating infrastructure, left us with urban settlements which are failing to respond to the environmental pressure and the socio-economic inequalities. Building on the myriad of knowledge from planners, geographers, sociologists and computer scientists, I developed a new element (i.e. link communities) within the theory of urban studies that defines cities as complex systems. After, I applied a method borrowed from the study of complex networks to unpack their basic elements. Knowing the link (i.e. functional, or overlapping) communities of metropolitan Glasgow enabled me to evaluate the current level of communities interconnectedness and reveal the gaps as well as the potentials for improving the studied system’s performance. The complex urban system in metropolitan Glasgow was represented by its networked infrastructure, which essentially was a system of distinct sub-systems, one of them mapped by a physical and the other one by a social graph. The conceptual framework for this methodological approach was formalised from the extensively reviewed literature and methods utilising network science tools to detect community structure in complex networks. The literature review led to constructing a hypothesis claiming that the efficiency of the physical network’s topology is achieved through optimizing the number of nodes with high betweenness centrality, while the efficiency of the logical network’s topology is achieved by optimizing the number of links with high edge betweenness. The conclusion from the literature review presented through the discourse on to the primal problem in 7.4.1, led to modelling the two network topologies as separate graphs. The bipartite graph of their primal syntax was mirrored to be symmetrical and converted to dual. From the dual syntax I measured the complete accessibility (i.e. betweenness centrality) of the entire area and not only of the streets. Betweenness centrality of a node measures the number of shortest paths that pass through the node connecting pairs of nodes. The betweenness centrality is same as the integration of streets in space syntax, where the streets are analysed in their dual syntax representation. Street integration is the number of intersections the street shares with other streets and a high value means high accessibility. Edges with high betweenness are shared between strong communities. Based on the theoretical underpinnings of the network’s modularity and community structure analysed herein, it can be concluded that a complex network that is both robust and efficient (and in urban planning terminology ‘sustainable’) is consisted of numerous strong communities connected with each other by optimal number of links with high edge betweenness. To get this insight, the study detected the edge cut-set and vertex cut-set of the complex network. The outcome was a statistical model developed in the open source software R (Ihaka and Gentleman, 1996). The model empirical detects the network’s overlapping communities, determining the current sustainability of its physical and logical topologies. Initially, an assumption was that the number of communities within the infrastructure (physical) network layer were different from the one in the logical. They were detected using the Louvain method that performs graph partitioning on the hierarchical streets structure. Further, the number of communities in the relational network layer (i.e. accessibility to locations) was detected based on the OD accessibility matrix established from the functional dependency between the household locations and predefined points of interest. The communities from the graph of the ‘relational layer' were discovered with the single-link hierarchical clustering algorithm. The number of communities observed in the physical and the logical topologies of the eight shires significantly deviated

    Telecommunication Economics

    Get PDF
    This book constitutes a collaborative and selected documentation of the scientific outcome of the European COST Action IS0605 Econ@Tel "A Telecommunications Economics COST Network" which run from October 2007 to October 2011. Involving experts from around 20 European countries, the goal of Econ@Tel was to develop a strategic research and training network among key people and organizations in order to enhance Europe's competence in the field of telecommunications economics. Reflecting the organization of the COST Action IS0605 Econ@Tel in working groups the following four major research areas are addressed: - evolution and regulation of communication ecosystems; - social and policy implications of communication technologies; - economics and governance of future networks; - future networks management architectures and mechanisms

    Game Theory in Communications:a Study of Two Scenarios

    Get PDF
    Multi-user communication theory typically studies the fundamental limits of communication systems, and considers communication schemes that approach or even achieve these limits. The functioning of many such schemes assumes that users always cooperate, even when it is not in their own best interest. In practice, this assumption need not be fulfilled, as rational communication participants are often only interested in maximizing their own communication experience, and may behave in an undesirable manner from the system's point of view. Thus, communication systems may operate differently than intended if the behavior of individual participants is not taken into account. In this thesis, we study how users make decisions in wireless settings, by considering their preferences and how they interact with each other. We investigate whether the outcomes of their decisions are desirable, and, if not, what can be done to improve them. In particular, we focus on two related issues. The first is the decision-making of communication users in the absence of any central authority, which we consider in the context of the Gaussian multiple access channel. The second is the pricing of wireless resources, which we consider in the context of the competition of wireless service providers for users who are not contractually tied to any provider, but free to choose the one offering the best tradeoff of parameters. In the first part of the thesis, we model the interaction of self-interested users in a Gaussian multiple access channel using non-cooperative game theory. We demonstrate that the lack of infrastructure leads to an inefficient outcome for users who interact only once, specifically due to the lack of coordination between users. Using evolutionary game theory, we show that this inefficient outcome would also arise as a result of repeated interaction of many individuals over time. On the other hand, if the users correlate their decoding schedule with the outcome of some publicly observed (pseudo) random variable, the resulting outcome is efficient. This shows that sometimes it takes very little intervention on the part of the system planner to make sure that users choose a desirable operating point. In the second part of the thesis, we consider the competition of wireless service providers for users who are free to choose their service provider based on their channel parameters and the resource price. We model this situation as a two-stage game where the providers announce unit resource prices in the first stage and the users choose how much resource they want to purchase from each provider in the second stage. Under fairly general conditions, we show that the competitive interaction of users and providers results in socially optimal resource allocation. We also provide a decentralized primal-dual algorithm and prove its convergence to the socially optimal outcome
    corecore