5,193 research outputs found

    Dynamic Topic-Related Tweet Retrieval

    Get PDF
    Twitter is a social network in which people publish publicly accessible brief, instant messages. With its exponential growth and the public nature and transversality of its contents, more researchers are using Twitter as a source of data for multiple purposes. In this context, the ability to retrieve those messages (tweets) related to a certain topic becomes critical. In this work, we define the topic-related tweet retrieval task and propose a dynamic, graph-based method with which to address it. We have applied our method to capture a data set containing tweets related to the participation of the Spanish team in the Euro 2012 soccer competition, measuring the precision and recall against other simple but commonly used approaches. The results demonstrate the effectiveness of our method, which significantly increases coverage of the chosen topic and is able to capture related but unknown à priori subtopics

    Adaptive Representations for Tracking Breaking News on Twitter

    Full text link
    Twitter is often the most up-to-date source for finding and tracking breaking news stories. Therefore, there is considerable interest in developing filters for tweet streams in order to track and summarize stories. This is a non-trivial text analytics task as tweets are short, and standard retrieval methods often fail as stories evolve over time. In this paper we examine the effectiveness of adaptive mechanisms for tracking and summarizing breaking news stories. We evaluate the effectiveness of these mechanisms on a number of recent news events for which manually curated timelines are available. Assessments based on ROUGE metrics indicate that an adaptive approaches are best suited for tracking evolving stories on Twitter.Comment: 8 Pag

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    Search Bias Quantification: Investigating Political Bias in Social Media and Web Search

    No full text
    Users frequently use search systems on the Web as well as online social media to learn about ongoing events and public opinion on personalities. Prior studies have shown that the top-ranked results returned by these search engines can shape user opinion about the topic (e.g., event or person) being searched. In case of polarizing topics like politics, where multiple competing perspectives exist, the political bias in the top search results can play a significant role in shaping public opinion towards (or away from) certain perspectives. Given the considerable impact that search bias can have on the user, we propose a generalizable search bias quantification framework that not only measures the political bias in ranked list output by the search system but also decouples the bias introduced by the different sources—input data and ranking system. We apply our framework to study the political bias in searches related to 2016 US Presidential primaries in Twitter social media search and find that both input data and ranking system matter in determining the final search output bias seen by the users. And finally, we use the framework to compare the relative bias for two popular search systems—Twitter social media search and Google web search—for queries related to politicians and political events. We end by discussing some potential solutions to signal the bias in the search results to make the users more aware of them.publishe

    Unleashing the Power of Hashtags in Tweet Analytics with Distributed Framework on Apache Storm

    Full text link
    Twitter is a popular social network platform where users can interact and post texts of up to 280 characters called tweets. Hashtags, hyperlinked words in tweets, have increasingly become crucial for tweet retrieval and search. Using hashtags for tweet topic classification is a challenging problem because of context dependent among words, slangs, abbreviation and emoticons in a short tweet along with evolving use of hashtags. Since Twitter generates millions of tweets daily, tweet analytics is a fundamental problem of Big data stream that often requires a real-time Distributed processing. This paper proposes a distributed online approach to tweet topic classification with hashtags. Being implemented on Apache Storm, a distributed real time framework, our approach incrementally identifies and updates a set of strong predictors in the Na\"ive Bayes model for classifying each incoming tweet instance. Preliminary experiments show promising results with up to 97% accuracy and 37% increase in throughput on eight processors.Comment: IEEE International Conference on Big Data 201
    corecore