247 research outputs found

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Bio-inspired robotic control in underactuation: principles for energy efficacy, dynamic compliance interactions and adaptability.

    Get PDF
    Biological systems achieve energy efficient and adaptive behaviours through extensive autologous and exogenous compliant interactions. Active dynamic compliances are created and enhanced from musculoskeletal system (joint-space) to external environment (task-space) amongst the underactuated motions. Underactuated systems with viscoelastic property are similar to these biological systems, in that their self-organisation and overall tasks must be achieved by coordinating the subsystems and dynamically interacting with the environment. One important question to raise is: How can we design control systems to achieve efficient locomotion, while adapt to dynamic conditions as the living systems do? In this thesis, a trajectory planning algorithm is developed for underactuated microrobotic systems with bio-inspired self-propulsion and viscoelastic property to achieve synchronized motion in an energy efficient, adaptive and analysable manner. The geometry of the state space of the systems is explicitly utilized, such that a synchronization of the generalized coordinates is achieved in terms of geometric relations along the desired motion trajectory. As a result, the internal dynamics complexity is sufficiently reduced, the dynamic couplings are explicitly characterised, and then the underactuated dynamics are projected onto a hyper-manifold. Following such a reduction and characterization, we arrive at mappings of system compliance and integrable second-order dynamics with the passive degrees of freedom. As such, the issue of trajectory planning is converted into convenient nonlinear geometric analysis and optimal trajectory parameterization. Solutions of the reduced dynamics and the geometric relations can be obtained through an optimal motion trajectory generator. Theoretical background of the proposed approach is presented with rigorous analysis and developed in detail for a particular example. Experimental studies are conducted to verify the effectiveness of the proposed method. Towards compliance interactions with the environment, accurate modelling or prediction of nonlinear friction forces is a nontrivial whilst challenging task. Frictional instabilities are typically required to be eliminated or compensated through efficiently designed controllers. In this work, a prediction and analysis framework is designed for the self-propelled vibro-driven system, whose locomotion greatly relies on the dynamic interactions with the nonlinear frictions. This thesis proposes a combined physics-based and analytical-based approach, in a manner that non-reversible characteristic for static friction, presliding as well as pure sliding regimes are revealed, and the frictional limit boundaries are identified. Nonlinear dynamic analysis and simulation results demonstrate good captions of experimentally observed frictional characteristics, quenching of friction-induced vibrations and satisfaction of energy requirements. The thesis also performs elaborative studies on trajectory tracking. Control schemes are designed and extended for a class of underactuated systems with concrete considerations on uncertainties and disturbances. They include a collocated partial feedback control scheme, and an adaptive variable structure control scheme with an elaborately designed auxiliary control variable. Generically, adaptive control schemes using neural networks are designed to ensure trajectory tracking. Theoretical background of these methods is presented with rigorous analysis and developed in detail for particular examples. The schemes promote the utilization of linear filters in the control input to improve the system robustness. Asymptotic stability and convergence of time-varying reference trajectories for the system dynamics are shown by means of Lyapunov synthesis

    Adaptive neural control of nonlinear systems with hysteresis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    On the adaptive and learning control design for systems with repetitiveness

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Stochastic System Design and Applications to Stochastically Robust Structural Control

    Get PDF
    The knowledge about a planned system in engineering design applications is never complete. Often, a probabilistic quantification of the uncertainty arising from this missing information is warranted in order to efficiently incorporate our partial knowledge about the system and its environment into their respective models. In this framework, the design objective is typically related to the expected value of a system performance measure, such as reliability or expected life-cycle cost. This system design process is called stochastic system design and the associated design optimization problem stochastic optimization. In this thesis general stochastic system design problems are discussed. Application of this design approach to the specific field of structural control is considered for developing a robust-to-uncertainties nonlinear controller synthesis methodology. Initially problems that involve relatively simple models are discussed. Analytical approximations, motivated by the simplicity of the models adopted, are discussed for evaluating the system performance and efficiently performing the stochastic optimization. Special focus is given in this setting on the design of control laws for linear structural systems with probabilistic model uncertainty, under stationary stochastic excitation. The analysis then shifts to complex systems, involving nonlinear models with high-dimensional uncertainties. To address this complexity in the model description stochastic simulation is suggested for evaluating the performance objectives. This simulation-based approach addresses adequately all important characteristics of the system but makes the associated design optimization challenging. A novel algorithm, called Stochastic Subset Optimization (SSO), is developed for efficiently exploring the sensitivity of the objective function to the design variables and iteratively identifying a subset of the original design space that has v i high plausibility of containing the optimal design variables. An efficient two-stage framework for the stochastic optimization is then discussed combining SSO with some other stochastic search algorithm. Topics related to the combination of the two different stages for overall enhanced efficiency of the optimization process are discussed. Applications to general structural design problems as well as structural control problems are finally considered. The design objectives in these problems are the reliability of the system and the life-cycle cost. For the latter case, instead of approximating the damages from future earthquakes in terms of the reliability of the structure, as typically performed in past research efforts, an accurate methodology is presented for estimating this cost; this methodology uses the nonlinear response of the structure under a given excitation to estimate the damages in a detailed, component level

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area
    • โ€ฆ
    corecore