1,418 research outputs found

    ETSI reconfigurable radio systems: status and future directions on software defined radio and cognitive radio standards

    Get PDF
    This article details the current work status of the ETSI Reconfigurable Radio Systems Technical Committee, positions the ETSI work with respect to other standards efforts (IEEE 802, IEEE SCC41) as well as the European Regulatory Framework, and gives an outlook on the future evolution. In particular, software defined radio related study results are presented with a focus on SDR architectures for mobile devices such as mobile phones. For MDs, a novel architecture and inherent interfaces are presented enabling the usage of SDR principles in a mass market context. Cognitive radio principles within ETSI RRS are concentrated on two topics, a cognitive pilot channel proposal and a Functional Architecture for Management and control of reconfigurable radio systems, including dynamic self-organizing planning and management, dynamic spectrum management, joint radio resource management. Finally, study results are indicated that are targeting a SDR/CR security framework.Postprint (published version

    The evolution of public safety communications in Europe: the results from the FP7 HELP project

    Get PDF
    This paper describes the results from the FP7 HELP project, which investigated the potential of emerging wireless communication technologies and potential synergies between mobile public safety and commercial networks to enhance the communication capabilities of public safety users. The paper identifies the current trends and challenges for wireless communications in the public safety domain, the potential solution frameworks identified in the HELP project and an economic analysis to show the benefits in terms of cost saving. The paper also describes the related research activities of the European Commission in this area.Peer ReviewedPostprint (published version

    Reconfigurable Multirate Systems in Cognitive Radios

    Get PDF

    TVWS policies to enable efficient spectrum sharing

    Get PDF
    The transition from analogue to the Digital Terrestrial Television (DTV) in Europe is planned to be completed by the end of the year 2012. The DTV spectrum allocation is such that there are a number of TV channels which cannot be used for additional high power broadcast transmitters due to mutual interference and hence are left unused within a given geographical location, i.e. the TV channels are geographically interleaved. The use of geographically interleaved spectrum provides for the so-called TV white spaces (TVWS) an opportunity for deploying new wireless services. The main objective of this paper is to present the spectrum policies that are suitable for TVWS at European level, identified within the COGEU project. The COGEU project aims the efficient exploitation of the geographical interleaved spectrum (TVWS). COGEU is an ICT collaborative project supported by the European Commission within the 7th Framework Programme. Nine partners from seven EU countries representing academia, research institutes and industry are involved in the project. The COGEU project is a composite of technical, business, and regulatory/policy domains, with the objective of taking advantage of the TV digital switchover by developing cognitive radio systems that leverage the favorable propagation characteristics of the UHF broadcast spectrum through the introduction and promotion of real-time secondary spectrum trading and the creation of new spectrum commons regimes. COGEU will also define new methodologies for compliance testing and certification of TVWS equipment to ensure non-interference coexistence with the DVB-T European standard. The innovation brought by COGEU is the combination of cognitive access to TV white spaces with secondary spectrum trading mechanisms.telecommunications,spectrum management,secondary spectrum market,regulation,TV white spaces,cognitive radio

    ETSI RRS - The Standardization Path to Next Generation Cognitive Radio Systems

    No full text
    This paper details the current work status of the ETSI Reconfigurable Radio Systems (RRS) Technical Committee (TC) and gives an outlook on the future evolution. While previous publications have presented an overview of ETSI RRS' main working axes related to i) Cognitive Radio System Aspects, ii) Radio Equipment Architecture (including a Cognitive Pilot Channel (CPC) proposal and a Functional Architecture (FA) for Management and Control of Reconfigurable Radio Systems), iii) Cognitive Management and Control and iv) Public Safety, this document focuses on latest progress related to UHF White Spaces work and the definition of an SDR Handset Architecture. In particular, it is outlined how Cognitive Radio principles can help to adapt existing and/or evolving Radio Standards, such as 3GPP Long Term Evolution, to a possible operation in UHF White Space bands

    Final report on dissemination, regulation, standardization, exploitation & training : D6.3

    Get PDF
    In D6.1 deliverable project dissemination, exploitation and training plans, as well as standardization & regulatory approach strategy was presented. The D6.2 reported on the necessary updates of these strategies and the actions taken by the partners in line with them, as well as the obtained results. In this D6.3 deliverable, a full set of project dissemination activities, standardization & regulatory contributions as well as an operator’s “cook book” outlining steps necessary for full deployment of ON functionality and services, are presented.Deliverable D6.3 del projecte OneFITPostprint (author’s final draft

    Efficient Channelization for PMR+4G and GSM Re-Farming Base Stations

    Get PDF
    Current trends in mobile communications look for a better usage of the frequency spectrum by diverging from the classic frequency bands division for each standard. Instead, sharing a same frequency band by several mobile standards has been motivated by several factors: under-utilisation of some frequency bands, better electromagnetic propagation properties and provision of new capabilities to existing standards. This new way to manage the electromagnetic spectrum has an influence in the devices which form the mobile radio interface: base stations and mobiles stations. In particular for base stations, channelization represents an important challenge. In this paper efficient channelization techniques are proposed as a practical solution for real world professional and commercial mobile communication cases where frequency bands are shared. Depending on each case, the most optimal solution is based on the application of one of these channelization techniques, or a combination of several of them
    • 

    corecore