257,029 research outputs found

    Topic-Based Influence Computation in Social Networks under Resource Constraints

    Full text link
    As social networks are constantly changing and evolving, methods to analyze dynamic social networks are becoming more important in understanding social trends. However, due to the restrictions imposed by the social network service providers, the resources available to fetch the entire contents of a social network are typically very limited. As a result, analysis of dynamic social network data requires maintaining an approximate copy of the social network for each time period, locally. In this paper, we study the problem of dynamic network and text fetching with limited probing capacities, for identifying and maintaining influential users as the social network evolves. We propose an algorithm to probe the relationships (required for global influence computation) as well as posts (required for topic-based influence computation) of a limited number of users during each probing period, based on the influence trends and activities of the users. We infer the current network based on the newly probed user data and the last known version of the network maintained locally. Additionally, we propose to use link prediction methods to further increase the accuracy of our network inference. We employ PageRank as the metric for influence computation. We illustrate how the proposed solution maintains accurate PageRank scores for computing global influence, and topic-sensitive weighted PageRank scores for topic-based influence. The latter relies on a topic-based network constructed via weights determined by semantic analysis of posts and their sharing statistics. We evaluate the effectiveness of our algorithms by comparing them with the true influence scores of the full and up-to-date version of the network, using data from the micro-blogging service Twitter. Results show that our techniques significantly outperform baseline methods and are superior to state-of-the-art techniques from the literature

    Extraction and Analysis of Dynamic Conversational Networks from TV Series

    Full text link
    Identifying and characterizing the dynamics of modern tv series subplots is an open problem. One way is to study the underlying social network of interactions between the characters. Standard dynamic network extraction methods rely on temporal integration, either over the whole considered period, or as a sequence of several time-slices. However, they turn out to be inappropriate in the case of tv series, because the scenes shown onscreen alternatively focus on parallel storylines, and do not necessarily respect a traditional chronology. In this article, we introduce Narrative Smoothing, a novel network extraction method taking advantage of the plot properties to solve some of their limitations. We apply our method to a corpus of 3 popular series, and compare it to both standard approaches. Narrative smoothing leads to more relevant observations when it comes to the characterization of the protagonists and their relationships, confirming its appropriateness to model the intertwined storylines constituting the plots.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0781

    dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning

    Full text link
    Learning graph representations is a fundamental task aimed at capturing various properties of graphs in vector space. The most recent methods learn such representations for static networks. However, real world networks evolve over time and have varying dynamics. Capturing such evolution is key to predicting the properties of unseen networks. To understand how the network dynamics affect the prediction performance, we propose an embedding approach which learns the structure of evolution in dynamic graphs and can predict unseen links with higher precision. Our model, dyngraph2vec, learns the temporal transitions in the network using a deep architecture composed of dense and recurrent layers. We motivate the need of capturing dynamics for prediction on a toy data set created using stochastic block models. We then demonstrate the efficacy of dyngraph2vec over existing state-of-the-art methods on two real world data sets. We observe that learning dynamics can improve the quality of embedding and yield better performance in link prediction

    Adversarial Attack and Defense on Graph Data: A Survey

    Full text link
    Deep neural networks (DNNs) have been widely applied to various applications including image classification, text generation, audio recognition, and graph data analysis. However, recent studies have shown that DNNs are vulnerable to adversarial attacks. Though there are several works studying adversarial attack and defense strategies on domains such as images and natural language processing, it is still difficult to directly transfer the learned knowledge to graph structure data due to its representation challenges. Given the importance of graph analysis, an increasing number of works start to analyze the robustness of machine learning models on graph data. Nevertheless, current studies considering adversarial behaviors on graph data usually focus on specific types of attacks with certain assumptions. In addition, each work proposes its own mathematical formulation which makes the comparison among different methods difficult. Therefore, in this paper, we aim to survey existing adversarial learning strategies on graph data and first provide a unified formulation for adversarial learning on graph data which covers most adversarial learning studies on graph. Moreover, we also compare different attacks and defenses on graph data and discuss their corresponding contributions and limitations. In this work, we systemically organize the considered works based on the features of each topic. This survey not only serves as a reference for the research community, but also brings a clear image researchers outside this research domain. Besides, we also create an online resource and keep updating the relevant papers during the last two years. More details of the comparisons of various studies based on this survey are open-sourced at https://github.com/YingtongDou/graph-adversarial-learning-literature.Comment: In submission to Journal. For more open-source and up-to-date information, please check our Github repository: https://github.com/YingtongDou/graph-adversarial-learning-literatur

    DyLink2Vec: Effective Feature Representation for Link Prediction in Dynamic Networks

    Full text link
    The temporal dynamics of a complex system such as a social network or a communication network can be studied by understanding the patterns of link appearance and disappearance over time. A critical task along this understanding is to predict the link state of the network at a future time given a collection of link states at earlier time points. In existing literature, this task is known as link prediction in dynamic networks. Solving this task is more difficult than its counterpart in static networks because an effective feature representation of node-pair instances for the case of dynamic network is hard to obtain. To overcome this problem, we propose a novel method for metric embedding of node-pair instances of a dynamic network. The proposed method models the metric embedding task as an optimal coding problem where the objective is to minimize the reconstruction error, and it solves this optimization task using a gradient descent method. We validate the effectiveness of the learned feature representation by utilizing it for link prediction in various real-life dynamic networks. Specifically, we show that our proposed link prediction model, which uses the extracted feature representation for the training instances, outperforms several existing methods that use well-known link prediction features

    Link Prediction in Social Networks: the State-of-the-Art

    Full text link
    In social networks, link prediction predicts missing links in current networks and new or dissolution links in future networks, is important for mining and analyzing the evolution of social networks. In the past decade, many works have been done about the link prediction in social networks. The goal of this paper is to comprehensively review, analyze and discuss the state-of-the-art of the link prediction in social networks. A systematical category for link prediction techniques and problems is presented. Then link prediction techniques and problems are analyzed and discussed. Typical applications of link prediction are also addressed. Achievements and roadmaps of some active research groups are introduced. Finally, some future challenges of the link prediction in social networks are discussed.Comment: 38 pages, 13 figures, Science China: Information Science, 201

    Saliency Prediction in the Deep Learning Era: Successes, Limitations, and Future Challenges

    Full text link
    Visual saliency models have enjoyed a big leap in performance in recent years, thanks to advances in deep learning and large scale annotated data. Despite enormous effort and huge breakthroughs, however, models still fall short in reaching human-level accuracy. In this work, I explore the landscape of the field emphasizing on new deep saliency models, benchmarks, and datasets. A large number of image and video saliency models are reviewed and compared over two image benchmarks and two large scale video datasets. Further, I identify factors that contribute to the gap between models and humans and discuss remaining issues that need to be addressed to build the next generation of more powerful saliency models. Some specific questions that are addressed include: in what ways current models fail, how to remedy them, what can be learned from cognitive studies of attention, how explicit saliency judgments relate to fixations, how to conduct fair model comparison, and what are the emerging applications of saliency models

    Ensemble-Based Discovery of Disjoint, Overlapping and Fuzzy Community Structures in Networks

    Full text link
    Though much work has been done on ensemble clustering in data mining, the application of ensemble methods to community detection in networks is in its infancy. In this paper, we propose two ensemble methods: ENDISCO and MEDOC. ENDISCO performs disjoint community detection. In contrast, MEDOC performs disjoint, overlapping, and fuzzy community detection and represents the first ever ensemble method for fuzzy and overlapping community detection. We run extensive experiments with both algorithms against both synthetic and several real-world datasets for which community structures are known. We show that ENDISCO and MEDOC both beat the best-known existing standalone community detection algorithms (though we emphasize that they leverage them). In the case of disjoint community detection, we show that both ENDISCO and MEDOC beat an existing ensemble community detection algorithm both in terms of multiple accuracy measures and run-time. We further show that our ensemble algorithms can help explore core-periphery structure of network communities, identify stable communities in dynamic networks and help solve the "degeneracy of solutions" problem, generating robust results

    DAVE: A Deep Audio-Visual Embedding for Dynamic Saliency Prediction

    Full text link
    This paper studies audio-visual deep saliency prediction. It introduces a conceptually simple and effective Deep Audio-Visual Embedding for dynamic saliency prediction dubbed ``DAVE" in conjunction with our efforts towards building an Audio-Visual Eye-tracking corpus named ``AVE". Despite existing a strong relation between auditory and visual cues for guiding gaze during perception, video saliency models only consider visual cues and neglect the auditory information that is ubiquitous in dynamic scenes. Here, we investigate the applicability of audio cues in conjunction with visual ones in predicting saliency maps using deep neural networks. To this end, the proposed model is intentionally designed to be simple. Two baseline models are developed on the same architecture which consists of an encoder-decoder. The encoder projects the input into a feature space followed by a decoder that infers saliency. We conduct an extensive analysis on different modalities and various aspects of multi-model dynamic saliency prediction. Our results suggest that (1) audio is a strong contributing cue for saliency prediction, (2) salient visible sound-source is the natural cause of the superiority of our Audio-Visual model, (3) richer feature representations for the input space leads to more powerful predictions even in absence of more sophisticated saliency decoders, and (4) Audio-Visual model improves over 53.54\% of the frames predicted by the best Visual model (our baseline). Our endeavour demonstrates that audio is an important cue that boosts dynamic video saliency prediction and helps models to approach human performance. The code is available at https://github.com/hrtavakoli/DAV

    Cognitive Internet of Things: A New Paradigm beyond Connection

    Full text link
    Current research on Internet of Things (IoT) mainly focuses on how to enable general objects to see, hear, and smell the physical world for themselves, and make them connected to share the observations. In this paper, we argue that only connected is not enough, beyond that, general objects should have the capability to learn, think, and understand both physical and social worlds by themselves. This practical need impels us to develop a new paradigm, named Cognitive Internet of Things (CIoT), to empower the current IoT with a `brain' for high-level intelligence. Specifically, we first present a comprehensive definition for CIoT, primarily inspired by the effectiveness of human cognition. Then, we propose an operational framework of CIoT, which mainly characterizes the interactions among five fundamental cognitive tasks: perception-action cycle, massive data analytics, semantic derivation and knowledge discovery, intelligent decision-making, and on-demand service provisioning. Furthermore, we provide a systematic tutorial on key enabling techniques involved in the cognitive tasks. In addition, we also discuss the design of proper performance metrics on evaluating the enabling techniques. Last but not least, we present the research challenges and open issues ahead. Building on the present work and potentially fruitful future studies, CIoT has the capability to bridge the physical world (with objects, resources, etc.) and the social world (with human demand, social behavior, etc.), and enhance smart resource allocation, automatic network operation, and intelligent service provisioning
    corecore